An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity

Kumar et al. consider the M/M/c/N+c feedback queue with constant retrial rate [1]. They provide a solution for the steady state probabilities based on the matrix-geometric method. We show that there exists a more efficient computation method to calculate the steady state probabilities when N + c is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2010-08, Vol.34 (8), p.2272-2278
1. Verfasser: Do, Tien Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2278
container_issue 8
container_start_page 2272
container_title Applied mathematical modelling
container_volume 34
creator Do, Tien Van
description Kumar et al. consider the M/M/c/N+c feedback queue with constant retrial rate [1]. They provide a solution for the steady state probabilities based on the matrix-geometric method. We show that there exists a more efficient computation method to calculate the steady state probabilities when N + c is large. We prove that the number of zero-eigenvalues of the characteristic matrix polynomial associated with the balance equation is ⌊ ( N + c + 2 ) / 2 ⌋ . As consequence, the remaining eigenvalues inside the unit circle can be computed in a quick manner based on the Sturm sequences. Therefore, the steady state probabilities can be determined in an efficient way.
doi_str_mv 10.1016/j.apm.2009.10.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671238492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X09003576</els_id><sourcerecordid>1671238492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-9ba585b1349ed36096c5c0642ccb87de7f6ac36c9862f382e3777cc35cde343a3</originalsourceid><addsrcrecordid>eNp9kElLQzEQgN9Bwbr8AG-5CF5as7wteBJxA8GLgrcwnTepqW8zyVP6701p8ehpmOGb7cuyc8EXgovyar2AsVtIznXKF1wWB9mMK17NNc_fj7LjENac8yJls2x90zOy1qGjPjIcunGKEN3QM2hXg3fxo2N28AxYN7XRBfLf5JklapaAn8xT9A5a9jXRROwn4Ylswa9oV3L9iiGMgC5uTrNDC22gs308yd7u715vH-fPLw9PtzfPc8y5inO9hKIulkLlmhpVcl1igbzMJeKyrhqqbAmoStR1Ka2qJamqqhBVgQ2pXIE6yS53c0c_pCNCNJ0LSG0LPQ1TMKKshFR1rmVCxQ5FP4TgyZrRuw78xghuti7N2iSXZutyW0ouU8_FfjwEhNZ66NGFv0YpCy1UpRN3veMo_frtyJuwlYzUOE8YTTO4f7b8AjHKjSo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671238492</pqid></control><display><type>article</type><title>An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Do, Tien Van</creator><creatorcontrib>Do, Tien Van</creatorcontrib><description>Kumar et al. consider the M/M/c/N+c feedback queue with constant retrial rate [1]. They provide a solution for the steady state probabilities based on the matrix-geometric method. We show that there exists a more efficient computation method to calculate the steady state probabilities when N + c is large. We prove that the number of zero-eigenvalues of the characteristic matrix polynomial associated with the balance equation is ⌊ ( N + c + 2 ) / 2 ⌋ . As consequence, the remaining eigenvalues inside the unit circle can be computed in a quick manner based on the Sturm sequences. Therefore, the steady state probabilities can be determined in an efficient way.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2009.10.025</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Applied sciences ; Computational efficiency ; Efficient Algorithm ; Eigenvalues ; Exact sciences and technology ; Feedback ; Feedback queue ; Mathematical analysis ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Queues ; Queuing theory. Traffic theory ; Steady state</subject><ispartof>Applied mathematical modelling, 2010-08, Vol.34 (8), p.2272-2278</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-9ba585b1349ed36096c5c0642ccb87de7f6ac36c9862f382e3777cc35cde343a3</citedby><cites>FETCH-LOGICAL-c403t-9ba585b1349ed36096c5c0642ccb87de7f6ac36c9862f382e3777cc35cde343a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X09003576$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22591379$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, Tien Van</creatorcontrib><title>An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity</title><title>Applied mathematical modelling</title><description>Kumar et al. consider the M/M/c/N+c feedback queue with constant retrial rate [1]. They provide a solution for the steady state probabilities based on the matrix-geometric method. We show that there exists a more efficient computation method to calculate the steady state probabilities when N + c is large. We prove that the number of zero-eigenvalues of the characteristic matrix polynomial associated with the balance equation is ⌊ ( N + c + 2 ) / 2 ⌋ . As consequence, the remaining eigenvalues inside the unit circle can be computed in a quick manner based on the Sturm sequences. Therefore, the steady state probabilities can be determined in an efficient way.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Efficient Algorithm</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Feedback queue</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Queues</subject><subject>Queuing theory. Traffic theory</subject><subject>Steady state</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kElLQzEQgN9Bwbr8AG-5CF5as7wteBJxA8GLgrcwnTepqW8zyVP6701p8ehpmOGb7cuyc8EXgovyar2AsVtIznXKF1wWB9mMK17NNc_fj7LjENac8yJls2x90zOy1qGjPjIcunGKEN3QM2hXg3fxo2N28AxYN7XRBfLf5JklapaAn8xT9A5a9jXRROwn4Ylswa9oV3L9iiGMgC5uTrNDC22gs308yd7u715vH-fPLw9PtzfPc8y5inO9hKIulkLlmhpVcl1igbzMJeKyrhqqbAmoStR1Ka2qJamqqhBVgQ2pXIE6yS53c0c_pCNCNJ0LSG0LPQ1TMKKshFR1rmVCxQ5FP4TgyZrRuw78xghuti7N2iSXZutyW0ouU8_FfjwEhNZ66NGFv0YpCy1UpRN3veMo_frtyJuwlYzUOE8YTTO4f7b8AjHKjSo</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Do, Tien Van</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100801</creationdate><title>An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity</title><author>Do, Tien Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-9ba585b1349ed36096c5c0642ccb87de7f6ac36c9862f382e3777cc35cde343a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Efficient Algorithm</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Feedback queue</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Queues</topic><topic>Queuing theory. Traffic theory</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, Tien Van</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, Tien Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity</atitle><jtitle>Applied mathematical modelling</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>34</volume><issue>8</issue><spage>2272</spage><epage>2278</epage><pages>2272-2278</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>Kumar et al. consider the M/M/c/N+c feedback queue with constant retrial rate [1]. They provide a solution for the steady state probabilities based on the matrix-geometric method. We show that there exists a more efficient computation method to calculate the steady state probabilities when N + c is large. We prove that the number of zero-eigenvalues of the characteristic matrix polynomial associated with the balance equation is ⌊ ( N + c + 2 ) / 2 ⌋ . As consequence, the remaining eigenvalues inside the unit circle can be computed in a quick manner based on the Sturm sequences. Therefore, the steady state probabilities can be determined in an efficient way.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2009.10.025</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2010-08, Vol.34 (8), p.2272-2278
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_1671238492
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Applied sciences
Computational efficiency
Efficient Algorithm
Eigenvalues
Exact sciences and technology
Feedback
Feedback queue
Mathematical analysis
Mathematical models
Operational research and scientific management
Operational research. Management science
Queues
Queuing theory. Traffic theory
Steady state
title An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20computation%20algorithm%20for%20a%20multiserver%20feedback%20retrial%20queue%20with%20a%20large%20queueing%20capacity&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Do,%20Tien%20Van&rft.date=2010-08-01&rft.volume=34&rft.issue=8&rft.spage=2272&rft.epage=2278&rft.pages=2272-2278&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2009.10.025&rft_dat=%3Cproquest_cross%3E1671238492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671238492&rft_id=info:pmid/&rft_els_id=S0307904X09003576&rfr_iscdi=true