Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements
The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes?...
Gespeichert in:
Veröffentlicht in: | Nature physics 2011-08, Vol.7 (8), p.631-634 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 8 |
container_start_page | 631 |
container_title | Nature physics |
container_volume | 7 |
creator | Gupta, Amar Nath Vincent, Abhilash Neupane, Krishna Yu, Hao Wang, Feng Woodside, Michael T. |
description | The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time.
Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures
1
,
2
. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo
3
has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality
4
. This method has been applied to simulations
5
,
6
and experiments
7
,
8
but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions
9
. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations. |
doi_str_mv | 10.1038/nphys2022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671237955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671237955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</originalsourceid><addsrcrecordid>eNpl0U1LwzAYAOAgCs7pwX8QPKlQbZKmaY8y5gcMvOi5ZMmb2ZEmXdKKvfvD7ZxMUAi8OTy8nwidk_SGpKy4de3bEGlK6QGaEJHxhGYFOdz_BTtGJzGu0zSjOWET9Dn_aCHUDbhOWvwuba1lV3uHvcEmACTgIKyGxEqno5It4ADKu9iFXn07E3yDnXcJbPra1stQ9w2OtVtZSBpvQfUWsPFBAY4tqC74qHw74AZk7ANsC8dTdGSkjXD2E6fo9X7-MntMFs8PT7O7RaIyyruEZ0JwxgojUrM0GgRLCQOtMmGoMCTTXEpVZkyXRQlaKAVEk_HlikoqmGBTdLnL2wa_6SF2VVNHBXYcDnwfK5ILQpkoOR_pxR-69n1wY3dVUeaUF5Ru0dUOqXGqGMBU7bhKGYaKpNX2HNX-HKO93tk4GreC8JvwP_4CylKQ1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896258225</pqid></control><display><type>article</type><title>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gupta, Amar Nath ; Vincent, Abhilash ; Neupane, Krishna ; Yu, Hao ; Wang, Feng ; Woodside, Michael T.</creator><creatorcontrib>Gupta, Amar Nath ; Vincent, Abhilash ; Neupane, Krishna ; Yu, Hao ; Wang, Feng ; Woodside, Michael T.</creatorcontrib><description>The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time.
Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures
1
,
2
. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo
3
has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality
4
. This method has been applied to simulations
5
,
6
and experiments
7
,
8
but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions
9
. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2022</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Biophysics ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Deoxyribonucleic acid ; Descriptions ; DNA ; Folding ; Formalism ; Landscapes ; letter ; Mathematical and Computational Physics ; Molecular ; Molecular biology ; Nucleic acids ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Protein folding ; Reconstruction ; Simulation ; Spectroscopy ; Theoretical</subject><ispartof>Nature physics, 2011-08, Vol.7 (8), p.631-634</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</citedby><cites>FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gupta, Amar Nath</creatorcontrib><creatorcontrib>Vincent, Abhilash</creatorcontrib><creatorcontrib>Neupane, Krishna</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Woodside, Michael T.</creatorcontrib><title>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time.
Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures
1
,
2
. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo
3
has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality
4
. This method has been applied to simulations
5
,
6
and experiments
7
,
8
but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions
9
. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.</description><subject>Atomic</subject><subject>Biophysics</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Deoxyribonucleic acid</subject><subject>Descriptions</subject><subject>DNA</subject><subject>Folding</subject><subject>Formalism</subject><subject>Landscapes</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular biology</subject><subject>Nucleic acids</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protein folding</subject><subject>Reconstruction</subject><subject>Simulation</subject><subject>Spectroscopy</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0U1LwzAYAOAgCs7pwX8QPKlQbZKmaY8y5gcMvOi5ZMmb2ZEmXdKKvfvD7ZxMUAi8OTy8nwidk_SGpKy4de3bEGlK6QGaEJHxhGYFOdz_BTtGJzGu0zSjOWET9Dn_aCHUDbhOWvwuba1lV3uHvcEmACTgIKyGxEqno5It4ADKu9iFXn07E3yDnXcJbPra1stQ9w2OtVtZSBpvQfUWsPFBAY4tqC74qHw74AZk7ANsC8dTdGSkjXD2E6fo9X7-MntMFs8PT7O7RaIyyruEZ0JwxgojUrM0GgRLCQOtMmGoMCTTXEpVZkyXRQlaKAVEk_HlikoqmGBTdLnL2wa_6SF2VVNHBXYcDnwfK5ILQpkoOR_pxR-69n1wY3dVUeaUF5Ru0dUOqXGqGMBU7bhKGYaKpNX2HNX-HKO93tk4GreC8JvwP_4CylKQ1g</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Gupta, Amar Nath</creator><creator>Vincent, Abhilash</creator><creator>Neupane, Krishna</creator><creator>Yu, Hao</creator><creator>Wang, Feng</creator><creator>Woodside, Michael T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110801</creationdate><title>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</title><author>Gupta, Amar Nath ; Vincent, Abhilash ; Neupane, Krishna ; Yu, Hao ; Wang, Feng ; Woodside, Michael T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic</topic><topic>Biophysics</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Deoxyribonucleic acid</topic><topic>Descriptions</topic><topic>DNA</topic><topic>Folding</topic><topic>Formalism</topic><topic>Landscapes</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular biology</topic><topic>Nucleic acids</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protein folding</topic><topic>Reconstruction</topic><topic>Simulation</topic><topic>Spectroscopy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Amar Nath</creatorcontrib><creatorcontrib>Vincent, Abhilash</creatorcontrib><creatorcontrib>Neupane, Krishna</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Woodside, Michael T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Amar Nath</au><au>Vincent, Abhilash</au><au>Neupane, Krishna</au><au>Yu, Hao</au><au>Wang, Feng</au><au>Woodside, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>7</volume><issue>8</issue><spage>631</spage><epage>634</epage><pages>631-634</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time.
Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures
1
,
2
. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo
3
has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality
4
. This method has been applied to simulations
5
,
6
and experiments
7
,
8
but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions
9
. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2022</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2011-08, Vol.7 (8), p.631-634 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671237955 |
source | Nature; Alma/SFX Local Collection |
subjects | Atomic Biophysics Classical and Continuum Physics Complex Systems Condensed Matter Physics Deoxyribonucleic acid Descriptions DNA Folding Formalism Landscapes letter Mathematical and Computational Physics Molecular Molecular biology Nucleic acids Optical and Plasma Physics Physics Physics and Astronomy Protein folding Reconstruction Simulation Spectroscopy Theoretical |
title | Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20free-energy-landscape%20reconstruction%20from%20non-equilibrium%20single-molecule%20force%20spectroscopy%20measurements&rft.jtitle=Nature%20physics&rft.au=Gupta,%20Amar%20Nath&rft.date=2011-08-01&rft.volume=7&rft.issue=8&rft.spage=631&rft.epage=634&rft.pages=631-634&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2022&rft_dat=%3Cproquest_cross%3E1671237955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896258225&rft_id=info:pmid/&rfr_iscdi=true |