Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements

The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes?...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2011-08, Vol.7 (8), p.631-634
Hauptverfasser: Gupta, Amar Nath, Vincent, Abhilash, Neupane, Krishna, Yu, Hao, Wang, Feng, Woodside, Michael T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 8
container_start_page 631
container_title Nature physics
container_volume 7
creator Gupta, Amar Nath
Vincent, Abhilash
Neupane, Krishna
Yu, Hao
Wang, Feng
Woodside, Michael T.
description The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time. Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures 1 , 2 . Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo 3 has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality 4 . This method has been applied to simulations 5 , 6 and experiments 7 , 8 but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions 9 . We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.
doi_str_mv 10.1038/nphys2022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671237955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671237955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</originalsourceid><addsrcrecordid>eNpl0U1LwzAYAOAgCs7pwX8QPKlQbZKmaY8y5gcMvOi5ZMmb2ZEmXdKKvfvD7ZxMUAi8OTy8nwidk_SGpKy4de3bEGlK6QGaEJHxhGYFOdz_BTtGJzGu0zSjOWET9Dn_aCHUDbhOWvwuba1lV3uHvcEmACTgIKyGxEqno5It4ADKu9iFXn07E3yDnXcJbPra1stQ9w2OtVtZSBpvQfUWsPFBAY4tqC74qHw74AZk7ANsC8dTdGSkjXD2E6fo9X7-MntMFs8PT7O7RaIyyruEZ0JwxgojUrM0GgRLCQOtMmGoMCTTXEpVZkyXRQlaKAVEk_HlikoqmGBTdLnL2wa_6SF2VVNHBXYcDnwfK5ILQpkoOR_pxR-69n1wY3dVUeaUF5Ru0dUOqXGqGMBU7bhKGYaKpNX2HNX-HKO93tk4GreC8JvwP_4CylKQ1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896258225</pqid></control><display><type>article</type><title>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gupta, Amar Nath ; Vincent, Abhilash ; Neupane, Krishna ; Yu, Hao ; Wang, Feng ; Woodside, Michael T.</creator><creatorcontrib>Gupta, Amar Nath ; Vincent, Abhilash ; Neupane, Krishna ; Yu, Hao ; Wang, Feng ; Woodside, Michael T.</creatorcontrib><description>The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time. Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures 1 , 2 . Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo 3 has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality 4 . This method has been applied to simulations 5 , 6 and experiments 7 , 8 but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions 9 . We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2022</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Biophysics ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Deoxyribonucleic acid ; Descriptions ; DNA ; Folding ; Formalism ; Landscapes ; letter ; Mathematical and Computational Physics ; Molecular ; Molecular biology ; Nucleic acids ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Protein folding ; Reconstruction ; Simulation ; Spectroscopy ; Theoretical</subject><ispartof>Nature physics, 2011-08, Vol.7 (8), p.631-634</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</citedby><cites>FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gupta, Amar Nath</creatorcontrib><creatorcontrib>Vincent, Abhilash</creatorcontrib><creatorcontrib>Neupane, Krishna</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Woodside, Michael T.</creatorcontrib><title>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time. Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures 1 , 2 . Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo 3 has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality 4 . This method has been applied to simulations 5 , 6 and experiments 7 , 8 but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions 9 . We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.</description><subject>Atomic</subject><subject>Biophysics</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Deoxyribonucleic acid</subject><subject>Descriptions</subject><subject>DNA</subject><subject>Folding</subject><subject>Formalism</subject><subject>Landscapes</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular biology</subject><subject>Nucleic acids</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protein folding</subject><subject>Reconstruction</subject><subject>Simulation</subject><subject>Spectroscopy</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0U1LwzAYAOAgCs7pwX8QPKlQbZKmaY8y5gcMvOi5ZMmb2ZEmXdKKvfvD7ZxMUAi8OTy8nwidk_SGpKy4de3bEGlK6QGaEJHxhGYFOdz_BTtGJzGu0zSjOWET9Dn_aCHUDbhOWvwuba1lV3uHvcEmACTgIKyGxEqno5It4ADKu9iFXn07E3yDnXcJbPra1stQ9w2OtVtZSBpvQfUWsPFBAY4tqC74qHw74AZk7ANsC8dTdGSkjXD2E6fo9X7-MntMFs8PT7O7RaIyyruEZ0JwxgojUrM0GgRLCQOtMmGoMCTTXEpVZkyXRQlaKAVEk_HlikoqmGBTdLnL2wa_6SF2VVNHBXYcDnwfK5ILQpkoOR_pxR-69n1wY3dVUeaUF5Ru0dUOqXGqGMBU7bhKGYaKpNX2HNX-HKO93tk4GreC8JvwP_4CylKQ1g</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Gupta, Amar Nath</creator><creator>Vincent, Abhilash</creator><creator>Neupane, Krishna</creator><creator>Yu, Hao</creator><creator>Wang, Feng</creator><creator>Woodside, Michael T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110801</creationdate><title>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</title><author>Gupta, Amar Nath ; Vincent, Abhilash ; Neupane, Krishna ; Yu, Hao ; Wang, Feng ; Woodside, Michael T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-54775338f70fbfde73013edc47f27f14d5aac943d989ed7cce1d11d16c2a27373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic</topic><topic>Biophysics</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Deoxyribonucleic acid</topic><topic>Descriptions</topic><topic>DNA</topic><topic>Folding</topic><topic>Formalism</topic><topic>Landscapes</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular biology</topic><topic>Nucleic acids</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protein folding</topic><topic>Reconstruction</topic><topic>Simulation</topic><topic>Spectroscopy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Amar Nath</creatorcontrib><creatorcontrib>Vincent, Abhilash</creatorcontrib><creatorcontrib>Neupane, Krishna</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Woodside, Michael T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Amar Nath</au><au>Vincent, Abhilash</au><au>Neupane, Krishna</au><au>Yu, Hao</au><au>Wang, Feng</au><au>Woodside, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>7</volume><issue>8</issue><spage>631</spage><epage>634</epage><pages>631-634</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The energy-landscape theory is an important tool for investigating how proteins fold. Hummer and Szabo conceived a simple method for constructing folding-energy landscapes from single-molecule pulling experiments. But are these non-equilibrium measurements a valid approach to equilibrium landscapes? The Hummer–Szabo formalism is now experimentally validated for the first time. Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures 1 , 2 . Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo 3 has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality 4 . This method has been applied to simulations 5 , 6 and experiments 7 , 8 but never validated experimentally. We tested it using force–extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions 9 . We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2022</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2011-08, Vol.7 (8), p.631-634
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1671237955
source Nature; Alma/SFX Local Collection
subjects Atomic
Biophysics
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Deoxyribonucleic acid
Descriptions
DNA
Folding
Formalism
Landscapes
letter
Mathematical and Computational Physics
Molecular
Molecular biology
Nucleic acids
Optical and Plasma Physics
Physics
Physics and Astronomy
Protein folding
Reconstruction
Simulation
Spectroscopy
Theoretical
title Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20free-energy-landscape%20reconstruction%20from%20non-equilibrium%20single-molecule%20force%20spectroscopy%20measurements&rft.jtitle=Nature%20physics&rft.au=Gupta,%20Amar%20Nath&rft.date=2011-08-01&rft.volume=7&rft.issue=8&rft.spage=631&rft.epage=634&rft.pages=631-634&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2022&rft_dat=%3Cproquest_cross%3E1671237955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896258225&rft_id=info:pmid/&rfr_iscdi=true