Quantum superposition of a single microwave photon in two different ’colour’ states
A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator. Fully controlled coherent coupling of arbitrary harmoni...
Gespeichert in:
Veröffentlicht in: | Nature physics 2011-08, Vol.7 (8), p.599-603 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 8 |
container_start_page | 599 |
container_title | Nature physics |
container_volume | 7 |
creator | Zakka-Bajjani, Eva Nguyen, François Lee, Minhyea Vale, Leila R. Simmonds, Raymond W. Aumentado, José |
description | A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator.
Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information
1
. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element
2
,
3
. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions
4
,
5
. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion
6
,
7
. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state
8
and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols
9
,
10
on-chip
11
. |
doi_str_mv | 10.1038/nphys2035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671237134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492861511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</originalsourceid><addsrcrecordid>eNplkM1KAzEUhYMoWKsL3yC4UmE0mSSTmaUU_0AQQXE5pJmkTZlJxiRj6c7X8PV8ElMqFXRz74H7cTj3AHCM0QVGpLy0_XwVckTYDhhhTlmW0xLvbjUn--AghAVCNC8wGYHXp0HYOHQwDL3yvQsmGmeh01DAYOysVbAz0ruleFewn7uYjsbCuHSwMVorr2yEXx-f0rVu8EnAEEVU4RDsadEGdfSzx-Dl5vp5cpc9PN7eT64eMklYFTOmG8Y1F7IgmEhNEWt0Q5XQtKgkY9OpmGqtC1KpkmCGNa0QySUu0-RFk1MyBqcb3967t0GFWHcmSNW2wio3hBoXHOeEY7JGT_6gixTZpnR1hRDmHKEqQWcbKP0cgle67r3phF_VGNXrhuttw4k937AhMXam_K_hf_gbmMCAIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900177009</pqid></control><display><type>article</type><title>Quantum superposition of a single microwave photon in two different ’colour’ states</title><source>SpringerLink_现刊</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Zakka-Bajjani, Eva ; Nguyen, François ; Lee, Minhyea ; Vale, Leila R. ; Simmonds, Raymond W. ; Aumentado, José</creator><creatorcontrib>Zakka-Bajjani, Eva ; Nguyen, François ; Lee, Minhyea ; Vale, Leila R. ; Simmonds, Raymond W. ; Aumentado, José</creatorcontrib><description>A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator.
Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information
1
. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element
2
,
3
. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions
4
,
5
. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion
6
,
7
. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state
8
and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols
9
,
10
on-chip
11
.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2035</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Atoms & subatomic particles ; Classical and Continuum Physics ; Coherence ; Color ; Colour ; Complex Systems ; Condensed Matter Physics ; Harmonic analysis ; Harmonics ; Joining ; letter ; Mathematical and Computational Physics ; Microwaves ; Molecular ; Optical and Plasma Physics ; Optical oscillators ; Physics ; Physics and Astronomy ; Quantum physics ; SQUIDs ; Superconducting quantum interference devices ; Theoretical</subject><ispartof>Nature physics, 2011-08, Vol.7 (8), p.599-603</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</citedby><cites>FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2035$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2035$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zakka-Bajjani, Eva</creatorcontrib><creatorcontrib>Nguyen, François</creatorcontrib><creatorcontrib>Lee, Minhyea</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Simmonds, Raymond W.</creatorcontrib><creatorcontrib>Aumentado, José</creatorcontrib><title>Quantum superposition of a single microwave photon in two different ’colour’ states</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator.
Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information
1
. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element
2
,
3
. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions
4
,
5
. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion
6
,
7
. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state
8
and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols
9
,
10
on-chip
11
.</description><subject>Atomic</subject><subject>Atoms & subatomic particles</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Color</subject><subject>Colour</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Joining</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Microwaves</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>SQUIDs</subject><subject>Superconducting quantum interference devices</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkM1KAzEUhYMoWKsL3yC4UmE0mSSTmaUU_0AQQXE5pJmkTZlJxiRj6c7X8PV8ElMqFXRz74H7cTj3AHCM0QVGpLy0_XwVckTYDhhhTlmW0xLvbjUn--AghAVCNC8wGYHXp0HYOHQwDL3yvQsmGmeh01DAYOysVbAz0ruleFewn7uYjsbCuHSwMVorr2yEXx-f0rVu8EnAEEVU4RDsadEGdfSzx-Dl5vp5cpc9PN7eT64eMklYFTOmG8Y1F7IgmEhNEWt0Q5XQtKgkY9OpmGqtC1KpkmCGNa0QySUu0-RFk1MyBqcb3967t0GFWHcmSNW2wio3hBoXHOeEY7JGT_6gixTZpnR1hRDmHKEqQWcbKP0cgle67r3phF_VGNXrhuttw4k937AhMXam_K_hf_gbmMCAIA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Zakka-Bajjani, Eva</creator><creator>Nguyen, François</creator><creator>Lee, Minhyea</creator><creator>Vale, Leila R.</creator><creator>Simmonds, Raymond W.</creator><creator>Aumentado, José</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110801</creationdate><title>Quantum superposition of a single microwave photon in two different ’colour’ states</title><author>Zakka-Bajjani, Eva ; Nguyen, François ; Lee, Minhyea ; Vale, Leila R. ; Simmonds, Raymond W. ; Aumentado, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic</topic><topic>Atoms & subatomic particles</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Color</topic><topic>Colour</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Joining</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Microwaves</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>SQUIDs</topic><topic>Superconducting quantum interference devices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakka-Bajjani, Eva</creatorcontrib><creatorcontrib>Nguyen, François</creatorcontrib><creatorcontrib>Lee, Minhyea</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Simmonds, Raymond W.</creatorcontrib><creatorcontrib>Aumentado, José</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakka-Bajjani, Eva</au><au>Nguyen, François</au><au>Lee, Minhyea</au><au>Vale, Leila R.</au><au>Simmonds, Raymond W.</au><au>Aumentado, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum superposition of a single microwave photon in two different ’colour’ states</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>7</volume><issue>8</issue><spage>599</spage><epage>603</epage><pages>599-603</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator.
Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information
1
. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element
2
,
3
. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions
4
,
5
. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion
6
,
7
. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state
8
and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols
9
,
10
on-chip
11
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2035</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2011-08, Vol.7 (8), p.599-603 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671237134 |
source | SpringerLink_现刊; Springer Nature - Connect here FIRST to enable access |
subjects | Atomic Atoms & subatomic particles Classical and Continuum Physics Coherence Color Colour Complex Systems Condensed Matter Physics Harmonic analysis Harmonics Joining letter Mathematical and Computational Physics Microwaves Molecular Optical and Plasma Physics Optical oscillators Physics Physics and Astronomy Quantum physics SQUIDs Superconducting quantum interference devices Theoretical |
title | Quantum superposition of a single microwave photon in two different ’colour’ states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20superposition%20of%20a%20single%20microwave%20photon%20in%20two%20different%20%E2%80%99colour%E2%80%99%20states&rft.jtitle=Nature%20physics&rft.au=Zakka-Bajjani,%20Eva&rft.date=2011-08-01&rft.volume=7&rft.issue=8&rft.spage=599&rft.epage=603&rft.pages=599-603&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2035&rft_dat=%3Cproquest_cross%3E2492861511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900177009&rft_id=info:pmid/&rfr_iscdi=true |