Quantum superposition of a single microwave photon in two different ’colour’ states

A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator. Fully controlled coherent coupling of arbitrary harmoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2011-08, Vol.7 (8), p.599-603
Hauptverfasser: Zakka-Bajjani, Eva, Nguyen, François, Lee, Minhyea, Vale, Leila R., Simmonds, Raymond W., Aumentado, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 8
container_start_page 599
container_title Nature physics
container_volume 7
creator Zakka-Bajjani, Eva
Nguyen, François
Lee, Minhyea
Vale, Leila R.
Simmonds, Raymond W.
Aumentado, José
description A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator. Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information 1 . Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element 2 , 3 . Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions 4 , 5 . Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion 6 , 7 . We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state 8 and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols 9 , 10 on-chip 11 .
doi_str_mv 10.1038/nphys2035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671237134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492861511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</originalsourceid><addsrcrecordid>eNplkM1KAzEUhYMoWKsL3yC4UmE0mSSTmaUU_0AQQXE5pJmkTZlJxiRj6c7X8PV8ElMqFXRz74H7cTj3AHCM0QVGpLy0_XwVckTYDhhhTlmW0xLvbjUn--AghAVCNC8wGYHXp0HYOHQwDL3yvQsmGmeh01DAYOysVbAz0ruleFewn7uYjsbCuHSwMVorr2yEXx-f0rVu8EnAEEVU4RDsadEGdfSzx-Dl5vp5cpc9PN7eT64eMklYFTOmG8Y1F7IgmEhNEWt0Q5XQtKgkY9OpmGqtC1KpkmCGNa0QySUu0-RFk1MyBqcb3967t0GFWHcmSNW2wio3hBoXHOeEY7JGT_6gixTZpnR1hRDmHKEqQWcbKP0cgle67r3phF_VGNXrhuttw4k937AhMXam_K_hf_gbmMCAIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900177009</pqid></control><display><type>article</type><title>Quantum superposition of a single microwave photon in two different ’colour’ states</title><source>SpringerLink_现刊</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Zakka-Bajjani, Eva ; Nguyen, François ; Lee, Minhyea ; Vale, Leila R. ; Simmonds, Raymond W. ; Aumentado, José</creator><creatorcontrib>Zakka-Bajjani, Eva ; Nguyen, François ; Lee, Minhyea ; Vale, Leila R. ; Simmonds, Raymond W. ; Aumentado, José</creatorcontrib><description>A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator. Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information 1 . Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element 2 , 3 . Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions 4 , 5 . Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion 6 , 7 . We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state 8 and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols 9 , 10 on-chip 11 .</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2035</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Atoms &amp; subatomic particles ; Classical and Continuum Physics ; Coherence ; Color ; Colour ; Complex Systems ; Condensed Matter Physics ; Harmonic analysis ; Harmonics ; Joining ; letter ; Mathematical and Computational Physics ; Microwaves ; Molecular ; Optical and Plasma Physics ; Optical oscillators ; Physics ; Physics and Astronomy ; Quantum physics ; SQUIDs ; Superconducting quantum interference devices ; Theoretical</subject><ispartof>Nature physics, 2011-08, Vol.7 (8), p.599-603</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</citedby><cites>FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2035$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2035$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zakka-Bajjani, Eva</creatorcontrib><creatorcontrib>Nguyen, François</creatorcontrib><creatorcontrib>Lee, Minhyea</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Simmonds, Raymond W.</creatorcontrib><creatorcontrib>Aumentado, José</creatorcontrib><title>Quantum superposition of a single microwave photon in two different ’colour’ states</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator. Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information 1 . Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element 2 , 3 . Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions 4 , 5 . Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion 6 , 7 . We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state 8 and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols 9 , 10 on-chip 11 .</description><subject>Atomic</subject><subject>Atoms &amp; subatomic particles</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Color</subject><subject>Colour</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Joining</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Microwaves</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>SQUIDs</subject><subject>Superconducting quantum interference devices</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkM1KAzEUhYMoWKsL3yC4UmE0mSSTmaUU_0AQQXE5pJmkTZlJxiRj6c7X8PV8ElMqFXRz74H7cTj3AHCM0QVGpLy0_XwVckTYDhhhTlmW0xLvbjUn--AghAVCNC8wGYHXp0HYOHQwDL3yvQsmGmeh01DAYOysVbAz0ruleFewn7uYjsbCuHSwMVorr2yEXx-f0rVu8EnAEEVU4RDsadEGdfSzx-Dl5vp5cpc9PN7eT64eMklYFTOmG8Y1F7IgmEhNEWt0Q5XQtKgkY9OpmGqtC1KpkmCGNa0QySUu0-RFk1MyBqcb3967t0GFWHcmSNW2wio3hBoXHOeEY7JGT_6gixTZpnR1hRDmHKEqQWcbKP0cgle67r3phF_VGNXrhuttw4k937AhMXam_K_hf_gbmMCAIA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Zakka-Bajjani, Eva</creator><creator>Nguyen, François</creator><creator>Lee, Minhyea</creator><creator>Vale, Leila R.</creator><creator>Simmonds, Raymond W.</creator><creator>Aumentado, José</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110801</creationdate><title>Quantum superposition of a single microwave photon in two different ’colour’ states</title><author>Zakka-Bajjani, Eva ; Nguyen, François ; Lee, Minhyea ; Vale, Leila R. ; Simmonds, Raymond W. ; Aumentado, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5fd57f7ac6313cf405dfd4eaf469c55bbabfff639e83151f49032c1803276d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic</topic><topic>Atoms &amp; subatomic particles</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Color</topic><topic>Colour</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Joining</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Microwaves</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>SQUIDs</topic><topic>Superconducting quantum interference devices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakka-Bajjani, Eva</creatorcontrib><creatorcontrib>Nguyen, François</creatorcontrib><creatorcontrib>Lee, Minhyea</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Simmonds, Raymond W.</creatorcontrib><creatorcontrib>Aumentado, José</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakka-Bajjani, Eva</au><au>Nguyen, François</au><au>Lee, Minhyea</au><au>Vale, Leila R.</au><au>Simmonds, Raymond W.</au><au>Aumentado, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum superposition of a single microwave photon in two different ’colour’ states</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>7</volume><issue>8</issue><spage>599</spage><epage>603</epage><pages>599-603</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A single microwave photon is prepared in a superposition of two states of different frequency. This is achieved by using a superconducting quantum interference device to mediate the coupling between two harmonics of a superconducting resonator. Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information 1 . Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element 2 , 3 . Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions 4 , 5 . Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion 6 , 7 . We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (∼7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state 8 and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols 9 , 10 on-chip 11 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2035</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2011-08, Vol.7 (8), p.599-603
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1671237134
source SpringerLink_现刊; Springer Nature - Connect here FIRST to enable access
subjects Atomic
Atoms & subatomic particles
Classical and Continuum Physics
Coherence
Color
Colour
Complex Systems
Condensed Matter Physics
Harmonic analysis
Harmonics
Joining
letter
Mathematical and Computational Physics
Microwaves
Molecular
Optical and Plasma Physics
Optical oscillators
Physics
Physics and Astronomy
Quantum physics
SQUIDs
Superconducting quantum interference devices
Theoretical
title Quantum superposition of a single microwave photon in two different ’colour’ states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20superposition%20of%20a%20single%20microwave%20photon%20in%20two%20different%20%E2%80%99colour%E2%80%99%20states&rft.jtitle=Nature%20physics&rft.au=Zakka-Bajjani,%20Eva&rft.date=2011-08-01&rft.volume=7&rft.issue=8&rft.spage=599&rft.epage=603&rft.pages=599-603&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2035&rft_dat=%3Cproquest_cross%3E2492861511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900177009&rft_id=info:pmid/&rfr_iscdi=true