Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution
Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corro...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2011-01, Vol.56 (4), p.1719-1728 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1728 |
---|---|
container_issue | 4 |
container_start_page | 1719 |
container_title | Electrochimica acta |
container_volume | 56 |
creator | Shu, Hung-Kai Al-Faqeer, Faisal M. Pickering, Howard W. |
description | Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10
μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H
2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the
IR type reported in the literature. |
doi_str_mv | 10.1016/j.electacta.2010.10.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671236274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468610013794</els_id><sourcerecordid>1671236274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4GcxG8bM1HN8l6K8WPQkEPXjyFNDurKelGk2zFf29qpVdhYIY3783wHkKXlEwooeJmPQEPNptSE0Z-0Qmh_AiNqJK84qpujtGIFKiaCiVO0VlKa0KIFJKM0Ouzy9n1bzj0OL8DthG2zgL-Mt7jj-hCxDkcUBtiDMmF_hYvYlG4HqfBdybDjX2PYVMGnIIfcqGco5PO-AQXf32MXu7vXuaP1fLpYTGfLStbc5IrCV2jWLMySgi2MtBOZd21UpWlrVveiLpuWdPBVHLDKCWKgpSEGEVXtl4BH6Pr_dmPGD4HSFlvXLLgvekhDElTISnjgslpoco91RYTKUKni8GNid-aEr3LUq_1IUu9y3K3KMEV5dXfE5Os8V00vXXpIGe8YUrVovBmex4Uw1sHUSfroLfQulju6ja4f3_9AJA7js4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671236274</pqid></control><display><type>article</type><title>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</title><source>Elsevier ScienceDirect Journals</source><creator>Shu, Hung-Kai ; Al-Faqeer, Faisal M. ; Pickering, Howard W.</creator><creatorcontrib>Shu, Hung-Kai ; Al-Faqeer, Faisal M. ; Pickering, Howard W.</creatorcontrib><description>Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10
μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H
2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the
IR type reported in the literature.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2010.10.013</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boundaries ; Corrosion ; Corrosion mechanisms ; Corrosion product ; Crevice ; Crevice corrosion ; Dissolution ; Exact sciences and technology ; Hydrogen evolution ; IR voltage ; Iron ; Localized corrosion ; Metals. Metallurgy ; Pits ; Pitting (corrosion) ; Polarization curve ; Sulfates ; Walls</subject><ispartof>Electrochimica acta, 2011-01, Vol.56 (4), p.1719-1728</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</citedby><cites>FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468610013794$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23928856$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Hung-Kai</creatorcontrib><creatorcontrib>Al-Faqeer, Faisal M.</creatorcontrib><creatorcontrib>Pickering, Howard W.</creatorcontrib><title>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</title><title>Electrochimica acta</title><description>Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10
μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H
2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the
IR type reported in the literature.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion product</subject><subject>Crevice</subject><subject>Crevice corrosion</subject><subject>Dissolution</subject><subject>Exact sciences and technology</subject><subject>Hydrogen evolution</subject><subject>IR voltage</subject><subject>Iron</subject><subject>Localized corrosion</subject><subject>Metals. Metallurgy</subject><subject>Pits</subject><subject>Pitting (corrosion)</subject><subject>Polarization curve</subject><subject>Sulfates</subject><subject>Walls</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4GcxG8bM1HN8l6K8WPQkEPXjyFNDurKelGk2zFf29qpVdhYIY3783wHkKXlEwooeJmPQEPNptSE0Z-0Qmh_AiNqJK84qpujtGIFKiaCiVO0VlKa0KIFJKM0Ouzy9n1bzj0OL8DthG2zgL-Mt7jj-hCxDkcUBtiDMmF_hYvYlG4HqfBdybDjX2PYVMGnIIfcqGco5PO-AQXf32MXu7vXuaP1fLpYTGfLStbc5IrCV2jWLMySgi2MtBOZd21UpWlrVveiLpuWdPBVHLDKCWKgpSEGEVXtl4BH6Pr_dmPGD4HSFlvXLLgvekhDElTISnjgslpoco91RYTKUKni8GNid-aEr3LUq_1IUu9y3K3KMEV5dXfE5Os8V00vXXpIGe8YUrVovBmex4Uw1sHUSfroLfQulju6ja4f3_9AJA7js4</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Shu, Hung-Kai</creator><creator>Al-Faqeer, Faisal M.</creator><creator>Pickering, Howard W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201101</creationdate><title>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</title><author>Shu, Hung-Kai ; Al-Faqeer, Faisal M. ; Pickering, Howard W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion product</topic><topic>Crevice</topic><topic>Crevice corrosion</topic><topic>Dissolution</topic><topic>Exact sciences and technology</topic><topic>Hydrogen evolution</topic><topic>IR voltage</topic><topic>Iron</topic><topic>Localized corrosion</topic><topic>Metals. Metallurgy</topic><topic>Pits</topic><topic>Pitting (corrosion)</topic><topic>Polarization curve</topic><topic>Sulfates</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Hung-Kai</creatorcontrib><creatorcontrib>Al-Faqeer, Faisal M.</creatorcontrib><creatorcontrib>Pickering, Howard W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Hung-Kai</au><au>Al-Faqeer, Faisal M.</au><au>Pickering, Howard W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</atitle><jtitle>Electrochimica acta</jtitle><date>2011-01</date><risdate>2011</risdate><volume>56</volume><issue>4</issue><spage>1719</spage><epage>1728</epage><pages>1719-1728</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10
μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H
2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the
IR type reported in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2010.10.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2011-01, Vol.56 (4), p.1719-1728 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671236274 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boundaries Corrosion Corrosion mechanisms Corrosion product Crevice Crevice corrosion Dissolution Exact sciences and technology Hydrogen evolution IR voltage Iron Localized corrosion Metals. Metallurgy Pits Pitting (corrosion) Polarization curve Sulfates Walls |
title | Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pitting%20on%20the%20crevice%20wall%20prior%20to%20crevice%20corrosion:%20Iron%20in%20sulfate/chromate%20solution&rft.jtitle=Electrochimica%20acta&rft.au=Shu,%20Hung-Kai&rft.date=2011-01&rft.volume=56&rft.issue=4&rft.spage=1719&rft.epage=1728&rft.pages=1719-1728&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2010.10.013&rft_dat=%3Cproquest_cross%3E1671236274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671236274&rft_id=info:pmid/&rft_els_id=S0013468610013794&rfr_iscdi=true |