Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution

Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2011-01, Vol.56 (4), p.1719-1728
Hauptverfasser: Shu, Hung-Kai, Al-Faqeer, Faisal M., Pickering, Howard W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1728
container_issue 4
container_start_page 1719
container_title Electrochimica acta
container_volume 56
creator Shu, Hung-Kai
Al-Faqeer, Faisal M.
Pickering, Howard W.
description Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10 μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H 2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the IR type reported in the literature.
doi_str_mv 10.1016/j.electacta.2010.10.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671236274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468610013794</els_id><sourcerecordid>1671236274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4GcxG8bM1HN8l6K8WPQkEPXjyFNDurKelGk2zFf29qpVdhYIY3783wHkKXlEwooeJmPQEPNptSE0Z-0Qmh_AiNqJK84qpujtGIFKiaCiVO0VlKa0KIFJKM0Ouzy9n1bzj0OL8DthG2zgL-Mt7jj-hCxDkcUBtiDMmF_hYvYlG4HqfBdybDjX2PYVMGnIIfcqGco5PO-AQXf32MXu7vXuaP1fLpYTGfLStbc5IrCV2jWLMySgi2MtBOZd21UpWlrVveiLpuWdPBVHLDKCWKgpSEGEVXtl4BH6Pr_dmPGD4HSFlvXLLgvekhDElTISnjgslpoco91RYTKUKni8GNid-aEr3LUq_1IUu9y3K3KMEV5dXfE5Os8V00vXXpIGe8YUrVovBmex4Uw1sHUSfroLfQulju6ja4f3_9AJA7js4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671236274</pqid></control><display><type>article</type><title>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</title><source>Elsevier ScienceDirect Journals</source><creator>Shu, Hung-Kai ; Al-Faqeer, Faisal M. ; Pickering, Howard W.</creator><creatorcontrib>Shu, Hung-Kai ; Al-Faqeer, Faisal M. ; Pickering, Howard W.</creatorcontrib><description>Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10 μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H 2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the IR type reported in the literature.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2010.10.013</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boundaries ; Corrosion ; Corrosion mechanisms ; Corrosion product ; Crevice ; Crevice corrosion ; Dissolution ; Exact sciences and technology ; Hydrogen evolution ; IR voltage ; Iron ; Localized corrosion ; Metals. Metallurgy ; Pits ; Pitting (corrosion) ; Polarization curve ; Sulfates ; Walls</subject><ispartof>Electrochimica acta, 2011-01, Vol.56 (4), p.1719-1728</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</citedby><cites>FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468610013794$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23928856$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Hung-Kai</creatorcontrib><creatorcontrib>Al-Faqeer, Faisal M.</creatorcontrib><creatorcontrib>Pickering, Howard W.</creatorcontrib><title>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</title><title>Electrochimica acta</title><description>Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10 μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H 2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the IR type reported in the literature.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion product</subject><subject>Crevice</subject><subject>Crevice corrosion</subject><subject>Dissolution</subject><subject>Exact sciences and technology</subject><subject>Hydrogen evolution</subject><subject>IR voltage</subject><subject>Iron</subject><subject>Localized corrosion</subject><subject>Metals. Metallurgy</subject><subject>Pits</subject><subject>Pitting (corrosion)</subject><subject>Polarization curve</subject><subject>Sulfates</subject><subject>Walls</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4GcxG8bM1HN8l6K8WPQkEPXjyFNDurKelGk2zFf29qpVdhYIY3783wHkKXlEwooeJmPQEPNptSE0Z-0Qmh_AiNqJK84qpujtGIFKiaCiVO0VlKa0KIFJKM0Ouzy9n1bzj0OL8DthG2zgL-Mt7jj-hCxDkcUBtiDMmF_hYvYlG4HqfBdybDjX2PYVMGnIIfcqGco5PO-AQXf32MXu7vXuaP1fLpYTGfLStbc5IrCV2jWLMySgi2MtBOZd21UpWlrVveiLpuWdPBVHLDKCWKgpSEGEVXtl4BH6Pr_dmPGD4HSFlvXLLgvekhDElTISnjgslpoco91RYTKUKni8GNid-aEr3LUq_1IUu9y3K3KMEV5dXfE5Os8V00vXXpIGe8YUrVovBmex4Uw1sHUSfroLfQulju6ja4f3_9AJA7js4</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Shu, Hung-Kai</creator><creator>Al-Faqeer, Faisal M.</creator><creator>Pickering, Howard W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201101</creationdate><title>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</title><author>Shu, Hung-Kai ; Al-Faqeer, Faisal M. ; Pickering, Howard W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-7ef9829ba8662baed475fd78530c5d39655d29fe473a211081e7700a81bc5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion product</topic><topic>Crevice</topic><topic>Crevice corrosion</topic><topic>Dissolution</topic><topic>Exact sciences and technology</topic><topic>Hydrogen evolution</topic><topic>IR voltage</topic><topic>Iron</topic><topic>Localized corrosion</topic><topic>Metals. Metallurgy</topic><topic>Pits</topic><topic>Pitting (corrosion)</topic><topic>Polarization curve</topic><topic>Sulfates</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Hung-Kai</creatorcontrib><creatorcontrib>Al-Faqeer, Faisal M.</creatorcontrib><creatorcontrib>Pickering, Howard W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Hung-Kai</au><au>Al-Faqeer, Faisal M.</au><au>Pickering, Howard W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution</atitle><jtitle>Electrochimica acta</jtitle><date>2011-01</date><risdate>2011</risdate><volume>56</volume><issue>4</issue><spage>1719</spage><epage>1728</epage><pages>1719-1728</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>Experimental results are presented for the induction period that precedes the onset of crevice corrosion. In situ visual examination and ex situ microscopy revealed that the first corrosive attack on the (passive) crevice wall occurs as a pit near the bottom of the crevice. Additional pits and corrosion product form higher and higher on the crevice wall during the induction period. The measured current is initially low in the passive range (10 μA), increasing gradually, but the measured current does not record the large increases in anodic current that produce the pits. The latter result and the observation that gas bubbles form within the pits indicate that the pitting initially is a local cell process of metal dissolution and cathodic reactions on the sample, including H 2 formation which occurs inside the pits in this iron/sulfate-chromate solution (pH 8.8, room temperature). Then, a transition from merging pits to corrosive attack across the width of the crevice wall occurs accompanied by a much steeper increasing current. This latter morphology (horizontal boundary that moves up the wall towards the crevice opening, heaviest attack just below this boundary and passive crevice wall above this boundary) is representative of stable crevice corrosion of the IR type reported in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2010.10.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2011-01, Vol.56 (4), p.1719-1728
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1671236274
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boundaries
Corrosion
Corrosion mechanisms
Corrosion product
Crevice
Crevice corrosion
Dissolution
Exact sciences and technology
Hydrogen evolution
IR voltage
Iron
Localized corrosion
Metals. Metallurgy
Pits
Pitting (corrosion)
Polarization curve
Sulfates
Walls
title Pitting on the crevice wall prior to crevice corrosion: Iron in sulfate/chromate solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pitting%20on%20the%20crevice%20wall%20prior%20to%20crevice%20corrosion:%20Iron%20in%20sulfate/chromate%20solution&rft.jtitle=Electrochimica%20acta&rft.au=Shu,%20Hung-Kai&rft.date=2011-01&rft.volume=56&rft.issue=4&rft.spage=1719&rft.epage=1728&rft.pages=1719-1728&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2010.10.013&rft_dat=%3Cproquest_cross%3E1671236274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671236274&rft_id=info:pmid/&rft_els_id=S0013468610013794&rfr_iscdi=true