Maximally resonant polygonal systems

A benzenoid system G is k -resonant if any set F of no more than k disjoint hexagons is a resonant pattern, i.e, G − F has a perfect matching. In 1990’s M. Zheng constructed the 3-resonant benzenoid systems and showed that they are maximally resonant, that is, they are k -resonant for all k ≥ 1 . Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2010-11, Vol.310 (21), p.2790-2800
Hauptverfasser: Liu, Saihua, Zhang, Heping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2800
container_issue 21
container_start_page 2790
container_title Discrete mathematics
container_volume 310
creator Liu, Saihua
Zhang, Heping
description A benzenoid system G is k -resonant if any set F of no more than k disjoint hexagons is a resonant pattern, i.e, G − F has a perfect matching. In 1990’s M. Zheng constructed the 3-resonant benzenoid systems and showed that they are maximally resonant, that is, they are k -resonant for all k ≥ 1 . Recently, the equivalence of 3-resonance and maximal resonance has been shown to be valid also for coronoid systems, carbon nanotubes, polyhexes in tori and Klein bottles, and fullerene graphs. So our main problem is to investigate the extent of graphs possessing this interesting property. In this paper, by replacing the above hexagons with even faces, we define k -resonance of graphs in surfaces, possibly with boundary, in a unified way. Some exceptions exist. For plane polygonal systems tessellated with polygons of even size at least six such that all inner vertices have the same degree three and the others have degree two or three, we show that such 3-resonant polygonal systems are indeed maximally resonant. They can be constructed by gluing and lapping operations on three types of basic graphs.
doi_str_mv 10.1016/j.disc.2010.06.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671235513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X10002165</els_id><sourcerecordid>1671235513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d4ca5b0fff4b48051229b0180b7ac132769dde8a1ad26005408286450d67a1513</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4KoLBTcznpPMZFJwI8UbVNwodBfSJCNT0pmaMxXn7U1pcenqXPjO5f8Zu0TIEVDernLXkM05pAbIHBCP2AhVxTOpcHHMRgDIMyHLxSk7I1pBqqVQI3b1an6atQlhmERPXWvafrLpwvCZ0jChgXq_pnN2UptA_uIQx-zj8eF99pzN355eZvfzzAop-swV1pRLqOu6WBYKSuR8ugRUsKyMRcErOXXOK4PGcQlQFqC4kkUJTlYGSxRjdrPfu4nd19ZTr9dJlQ_BtL7bkkZZIRdlIhPK96iNHVH0td7EpCMOGkHvLNErvbNE7yzRIHWyJA1dH_YbsibU0bS2ob9JLjjy9FLi7vacT2K_Gx812ca31rsmettr1zX_nfkFLzt1RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671235513</pqid></control><display><type>article</type><title>Maximally resonant polygonal systems</title><source>Access via ScienceDirect (Elsevier)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Liu, Saihua ; Zhang, Heping</creator><creatorcontrib>Liu, Saihua ; Zhang, Heping</creatorcontrib><description>A benzenoid system G is k -resonant if any set F of no more than k disjoint hexagons is a resonant pattern, i.e, G − F has a perfect matching. In 1990’s M. Zheng constructed the 3-resonant benzenoid systems and showed that they are maximally resonant, that is, they are k -resonant for all k ≥ 1 . Recently, the equivalence of 3-resonance and maximal resonance has been shown to be valid also for coronoid systems, carbon nanotubes, polyhexes in tori and Klein bottles, and fullerene graphs. So our main problem is to investigate the extent of graphs possessing this interesting property. In this paper, by replacing the above hexagons with even faces, we define k -resonance of graphs in surfaces, possibly with boundary, in a unified way. Some exceptions exist. For plane polygonal systems tessellated with polygons of even size at least six such that all inner vertices have the same degree three and the others have degree two or three, we show that such 3-resonant polygonal systems are indeed maximally resonant. They can be constructed by gluing and lapping operations on three types of basic graphs.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.06.011</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>[formula omitted]-resonance ; Algebra ; Applied sciences ; Benzenoids ; Boundaries ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Construction ; Exact sciences and technology ; Graph theory ; Graphs ; Hexagons ; Information retrieval. Graph ; Inner dual ; Lapping ; Mathematical analysis ; Mathematics ; Partial differential equations ; Perfect matching ; Polygonal system ; Polygons ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Discrete mathematics, 2010-11, Vol.310 (21), p.2790-2800</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d4ca5b0fff4b48051229b0180b7ac132769dde8a1ad26005408286450d67a1513</citedby><cites>FETCH-LOGICAL-c363t-d4ca5b0fff4b48051229b0180b7ac132769dde8a1ad26005408286450d67a1513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2010.06.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23212828$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Saihua</creatorcontrib><creatorcontrib>Zhang, Heping</creatorcontrib><title>Maximally resonant polygonal systems</title><title>Discrete mathematics</title><description>A benzenoid system G is k -resonant if any set F of no more than k disjoint hexagons is a resonant pattern, i.e, G − F has a perfect matching. In 1990’s M. Zheng constructed the 3-resonant benzenoid systems and showed that they are maximally resonant, that is, they are k -resonant for all k ≥ 1 . Recently, the equivalence of 3-resonance and maximal resonance has been shown to be valid also for coronoid systems, carbon nanotubes, polyhexes in tori and Klein bottles, and fullerene graphs. So our main problem is to investigate the extent of graphs possessing this interesting property. In this paper, by replacing the above hexagons with even faces, we define k -resonance of graphs in surfaces, possibly with boundary, in a unified way. Some exceptions exist. For plane polygonal systems tessellated with polygons of even size at least six such that all inner vertices have the same degree three and the others have degree two or three, we show that such 3-resonant polygonal systems are indeed maximally resonant. They can be constructed by gluing and lapping operations on three types of basic graphs.</description><subject>[formula omitted]-resonance</subject><subject>Algebra</subject><subject>Applied sciences</subject><subject>Benzenoids</subject><subject>Boundaries</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hexagons</subject><subject>Information retrieval. Graph</subject><subject>Inner dual</subject><subject>Lapping</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Perfect matching</subject><subject>Polygonal system</subject><subject>Polygons</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4KoLBTcznpPMZFJwI8UbVNwodBfSJCNT0pmaMxXn7U1pcenqXPjO5f8Zu0TIEVDernLXkM05pAbIHBCP2AhVxTOpcHHMRgDIMyHLxSk7I1pBqqVQI3b1an6atQlhmERPXWvafrLpwvCZ0jChgXq_pnN2UptA_uIQx-zj8eF99pzN355eZvfzzAop-swV1pRLqOu6WBYKSuR8ugRUsKyMRcErOXXOK4PGcQlQFqC4kkUJTlYGSxRjdrPfu4nd19ZTr9dJlQ_BtL7bkkZZIRdlIhPK96iNHVH0td7EpCMOGkHvLNErvbNE7yzRIHWyJA1dH_YbsibU0bS2ob9JLjjy9FLi7vacT2K_Gx812ca31rsmettr1zX_nfkFLzt1RQ</recordid><startdate>20101106</startdate><enddate>20101106</enddate><creator>Liu, Saihua</creator><creator>Zhang, Heping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101106</creationdate><title>Maximally resonant polygonal systems</title><author>Liu, Saihua ; Zhang, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d4ca5b0fff4b48051229b0180b7ac132769dde8a1ad26005408286450d67a1513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>[formula omitted]-resonance</topic><topic>Algebra</topic><topic>Applied sciences</topic><topic>Benzenoids</topic><topic>Boundaries</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hexagons</topic><topic>Information retrieval. Graph</topic><topic>Inner dual</topic><topic>Lapping</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Perfect matching</topic><topic>Polygonal system</topic><topic>Polygons</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Saihua</creatorcontrib><creatorcontrib>Zhang, Heping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Saihua</au><au>Zhang, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximally resonant polygonal systems</atitle><jtitle>Discrete mathematics</jtitle><date>2010-11-06</date><risdate>2010</risdate><volume>310</volume><issue>21</issue><spage>2790</spage><epage>2800</epage><pages>2790-2800</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>A benzenoid system G is k -resonant if any set F of no more than k disjoint hexagons is a resonant pattern, i.e, G − F has a perfect matching. In 1990’s M. Zheng constructed the 3-resonant benzenoid systems and showed that they are maximally resonant, that is, they are k -resonant for all k ≥ 1 . Recently, the equivalence of 3-resonance and maximal resonance has been shown to be valid also for coronoid systems, carbon nanotubes, polyhexes in tori and Klein bottles, and fullerene graphs. So our main problem is to investigate the extent of graphs possessing this interesting property. In this paper, by replacing the above hexagons with even faces, we define k -resonance of graphs in surfaces, possibly with boundary, in a unified way. Some exceptions exist. For plane polygonal systems tessellated with polygons of even size at least six such that all inner vertices have the same degree three and the others have degree two or three, we show that such 3-resonant polygonal systems are indeed maximally resonant. They can be constructed by gluing and lapping operations on three types of basic graphs.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2010.06.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2010-11, Vol.310 (21), p.2790-2800
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1671235513
source Access via ScienceDirect (Elsevier); Free E-Journal (出版社公開部分のみ)
subjects [formula omitted]-resonance
Algebra
Applied sciences
Benzenoids
Boundaries
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Construction
Exact sciences and technology
Graph theory
Graphs
Hexagons
Information retrieval. Graph
Inner dual
Lapping
Mathematical analysis
Mathematics
Partial differential equations
Perfect matching
Polygonal system
Polygons
Sciences and techniques of general use
Theoretical computing
title Maximally resonant polygonal systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximally%20resonant%20polygonal%20systems&rft.jtitle=Discrete%20mathematics&rft.au=Liu,%20Saihua&rft.date=2010-11-06&rft.volume=310&rft.issue=21&rft.spage=2790&rft.epage=2800&rft.pages=2790-2800&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.06.011&rft_dat=%3Cproquest_cross%3E1671235513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671235513&rft_id=info:pmid/&rft_els_id=S0012365X10002165&rfr_iscdi=true