Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities
Bell’s theorem experiments, which test the completeness of quantum mechanics, have a number of loopholes. However, one type—detection loopholes—becomes smaller when the measurement has more possible outcomes. Bell’s inequality is now violated in tests with as many as 11 different results. Quantum en...
Gespeichert in:
Veröffentlicht in: | Nature physics 2011-09, Vol.7 (9), p.677-680 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 680 |
---|---|
container_issue | 9 |
container_start_page | 677 |
container_title | Nature physics |
container_volume | 7 |
creator | Dada, Adetunmise C. Leach, Jonathan Buller, Gerald S. Padgett, Miles J. Andersson, Erika |
description | Bell’s theorem experiments, which test the completeness of quantum mechanics, have a number of loopholes. However, one type—detection loopholes—becomes smaller when the measurement has more possible outcomes. Bell’s inequality is now violated in tests with as many as 11 different results.
Quantum entanglement
1
,
2
plays a vital role in many quantum-information and communication tasks
3
. Entangled states of higher-dimensional systems are of great interest owing to the extended possibilities they provide. For example, they enable the realization of new types of quantum information scheme that can offer higher-information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems (see ref.
4
and references therein). Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher-dimensional entangled systems are used
5
. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalized to
d
-dimensional systems
6
up to
d
=12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum
7
, generated through spontaneous parametric down-conversion
8
,
9
, and manipulated using computer-controlled holograms. |
doi_str_mv | 10.1038/nphys1996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671235023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475971101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-38e934043602b0d3feb03cc3b7a9714122f036c590fe6c4a9389c4c5b4c974b53</originalsourceid><addsrcrecordid>eNpl0EtLxDAQB_AgCq6rB79B8KRCNa8-ctRlfcCCFz2XNJ12s3STbtOq66c3ZWUFPWUy_Bhm_gidU3JDCc9ubbvceiplcoAmNBVxxERGD_d1yo_RifcrQgRLKJ8gmH-20Jk12F41eGnqZVSOP2-cDY3-w0Xt0vXO4lHYuoGRYmVL_G5co_rgPHYVrsFCpxrzBSW-h6bBxsJmCI3egD9FR5VqPJz9vFP09jB_nT1Fi5fH59ndItKCxX3EM5BcEMETwgpS8goKwrXmRapkSgVlrCI80bEkFSRaKMkzqYWOC6FlKoqYT9Hlbm7buc0Avs_XxuuwjbLgBp_TJKWMx4TxQC_-0JUbunCzzzOZjOHEWUBXO6Q7530HVd6GrFS3zSnJx7zzfd7BXu-sD8bW0P0O_I-_AbOag3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896261358</pqid></control><display><type>article</type><title>Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dada, Adetunmise C. ; Leach, Jonathan ; Buller, Gerald S. ; Padgett, Miles J. ; Andersson, Erika</creator><creatorcontrib>Dada, Adetunmise C. ; Leach, Jonathan ; Buller, Gerald S. ; Padgett, Miles J. ; Andersson, Erika</creatorcontrib><description>Bell’s theorem experiments, which test the completeness of quantum mechanics, have a number of loopholes. However, one type—detection loopholes—becomes smaller when the measurement has more possible outcomes. Bell’s inequality is now violated in tests with as many as 11 different results.
Quantum entanglement
1
,
2
plays a vital role in many quantum-information and communication tasks
3
. Entangled states of higher-dimensional systems are of great interest owing to the extended possibilities they provide. For example, they enable the realization of new types of quantum information scheme that can offer higher-information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems (see ref.
4
and references therein). Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher-dimensional entangled systems are used
5
. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalized to
d
-dimensional systems
6
up to
d
=12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum
7
, generated through spontaneous parametric down-conversion
8
,
9
, and manipulated using computer-controlled holograms.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1996</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Angular momentum ; Atomic ; Bells ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Entangled states ; Entanglement ; Holography ; Inequalities ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optics ; Photons ; Physics ; Physics and Astronomy ; Quantum physics ; Tasks ; Theoretical</subject><ispartof>Nature physics, 2011-09, Vol.7 (9), p.677-680</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Sep 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-38e934043602b0d3feb03cc3b7a9714122f036c590fe6c4a9389c4c5b4c974b53</citedby><cites>FETCH-LOGICAL-c425t-38e934043602b0d3feb03cc3b7a9714122f036c590fe6c4a9389c4c5b4c974b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1996$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1996$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dada, Adetunmise C.</creatorcontrib><creatorcontrib>Leach, Jonathan</creatorcontrib><creatorcontrib>Buller, Gerald S.</creatorcontrib><creatorcontrib>Padgett, Miles J.</creatorcontrib><creatorcontrib>Andersson, Erika</creatorcontrib><title>Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Bell’s theorem experiments, which test the completeness of quantum mechanics, have a number of loopholes. However, one type—detection loopholes—becomes smaller when the measurement has more possible outcomes. Bell’s inequality is now violated in tests with as many as 11 different results.
Quantum entanglement
1
,
2
plays a vital role in many quantum-information and communication tasks
3
. Entangled states of higher-dimensional systems are of great interest owing to the extended possibilities they provide. For example, they enable the realization of new types of quantum information scheme that can offer higher-information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems (see ref.
4
and references therein). Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher-dimensional entangled systems are used
5
. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalized to
d
-dimensional systems
6
up to
d
=12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum
7
, generated through spontaneous parametric down-conversion
8
,
9
, and manipulated using computer-controlled holograms.</description><subject>Angular momentum</subject><subject>Atomic</subject><subject>Bells</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Entangled states</subject><subject>Entanglement</subject><subject>Holography</subject><subject>Inequalities</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>Tasks</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0EtLxDAQB_AgCq6rB79B8KRCNa8-ctRlfcCCFz2XNJ12s3STbtOq66c3ZWUFPWUy_Bhm_gidU3JDCc9ubbvceiplcoAmNBVxxERGD_d1yo_RifcrQgRLKJ8gmH-20Jk12F41eGnqZVSOP2-cDY3-w0Xt0vXO4lHYuoGRYmVL_G5co_rgPHYVrsFCpxrzBSW-h6bBxsJmCI3egD9FR5VqPJz9vFP09jB_nT1Fi5fH59ndItKCxX3EM5BcEMETwgpS8goKwrXmRapkSgVlrCI80bEkFSRaKMkzqYWOC6FlKoqYT9Hlbm7buc0Avs_XxuuwjbLgBp_TJKWMx4TxQC_-0JUbunCzzzOZjOHEWUBXO6Q7530HVd6GrFS3zSnJx7zzfd7BXu-sD8bW0P0O_I-_AbOag3U</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Dada, Adetunmise C.</creator><creator>Leach, Jonathan</creator><creator>Buller, Gerald S.</creator><creator>Padgett, Miles J.</creator><creator>Andersson, Erika</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110901</creationdate><title>Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities</title><author>Dada, Adetunmise C. ; Leach, Jonathan ; Buller, Gerald S. ; Padgett, Miles J. ; Andersson, Erika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-38e934043602b0d3feb03cc3b7a9714122f036c590fe6c4a9389c4c5b4c974b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angular momentum</topic><topic>Atomic</topic><topic>Bells</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Entangled states</topic><topic>Entanglement</topic><topic>Holography</topic><topic>Inequalities</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>Tasks</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dada, Adetunmise C.</creatorcontrib><creatorcontrib>Leach, Jonathan</creatorcontrib><creatorcontrib>Buller, Gerald S.</creatorcontrib><creatorcontrib>Padgett, Miles J.</creatorcontrib><creatorcontrib>Andersson, Erika</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dada, Adetunmise C.</au><au>Leach, Jonathan</au><au>Buller, Gerald S.</au><au>Padgett, Miles J.</au><au>Andersson, Erika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>7</volume><issue>9</issue><spage>677</spage><epage>680</epage><pages>677-680</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Bell’s theorem experiments, which test the completeness of quantum mechanics, have a number of loopholes. However, one type—detection loopholes—becomes smaller when the measurement has more possible outcomes. Bell’s inequality is now violated in tests with as many as 11 different results.
Quantum entanglement
1
,
2
plays a vital role in many quantum-information and communication tasks
3
. Entangled states of higher-dimensional systems are of great interest owing to the extended possibilities they provide. For example, they enable the realization of new types of quantum information scheme that can offer higher-information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems (see ref.
4
and references therein). Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher-dimensional entangled systems are used
5
. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalized to
d
-dimensional systems
6
up to
d
=12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum
7
, generated through spontaneous parametric down-conversion
8
,
9
, and manipulated using computer-controlled holograms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1996</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2011-09, Vol.7 (9), p.677-680 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671235023 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Angular momentum Atomic Bells Classical and Continuum Physics Complex Systems Condensed Matter Physics Entangled states Entanglement Holography Inequalities letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Optics Photons Physics Physics and Astronomy Quantum physics Tasks Theoretical |
title | Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20high-dimensional%20two-photon%20entanglement%20and%20violations%20of%20generalized%20Bell%20inequalities&rft.jtitle=Nature%20physics&rft.au=Dada,%20Adetunmise%20C.&rft.date=2011-09-01&rft.volume=7&rft.issue=9&rft.spage=677&rft.epage=680&rft.pages=677-680&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1996&rft_dat=%3Cproquest_cross%3E2475971101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896261358&rft_id=info:pmid/&rfr_iscdi=true |