The uncovered set and indifference in spatial models: A fuzzy set approach
The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering...
Gespeichert in:
Veröffentlicht in: | Fuzzy sets and systems 2011-04, Vol.168 (1), p.89-101 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Fuzzy sets and systems |
container_volume | 168 |
creator | Mordeson, John N. Clark, Terry D. Miller, Nicholas R. Casey, Peter C. Gibilisco, Michael B. |
description | The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions. |
doi_str_mv | 10.1016/j.fss.2010.10.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671233174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165011410004471</els_id><sourcerecordid>1671233174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFsugpddM9nP6qkUPyl4qeeQTSY0Zbtbk91C--vNusWjhzCZh2dm4CXkFlgMDPKHTWy8jzn77eNAzsgEyoJHecngnEwCySIGkF6SK-83jIV_zibkY7VG2jeq3aNDTT12VDaa2kZbYwJqFIaG-p3srKzpttVY-0c6p6Y_Hg-jv9u5Vqr1NbkwsvZ4c6pT8vXyvFq8RcvP1_fFfBmplCVdVAIiz6sMNRrIqqTQmM2y8HQJCiUoSAFnKtO8qlIlDWdFzpOqQECWFKVJpuR-3BvOfvfoO7G1XmFdywbb3gvIC-BJAkUaVBhV5VrvHRqxc3Yr3UEAE0NuYiNCbmLIbUCBhJm703rplayNk42y_m-QJzMAVg7e0-iFQHBv0Qmv7JCXtg5VJ3Rr_7nyA9XqgpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671233174</pqid></control><display><type>article</type><title>The uncovered set and indifference in spatial models: A fuzzy set approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mordeson, John N. ; Clark, Terry D. ; Miller, Nicholas R. ; Casey, Peter C. ; Gibilisco, Michael B.</creator><creatorcontrib>Mordeson, John N. ; Clark, Terry D. ; Miller, Nicholas R. ; Casey, Peter C. ; Gibilisco, Michael B.</creatorcontrib><description>The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2010.10.016</identifier><identifier>CODEN: FSSYD8</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Circuit properties ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Covering ; Cycling ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fuzzy ; Fuzzy logic ; Fuzzy preferences ; Fuzzy set theory ; Information, signal and communications theory ; Mathematical methods ; Mathematical models ; Mathematics ; Miscellaneous ; Order, lattices, ordered algebraic structures ; Pareto optimality ; Sciences and techniques of general use ; Social sciences ; Spatial models ; Telecommunications and information theory ; Theoretical computing ; Uncovered set</subject><ispartof>Fuzzy sets and systems, 2011-04, Vol.168 (1), p.89-101</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</citedby><cites>FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fss.2010.10.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23911086$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Clark, Terry D.</creatorcontrib><creatorcontrib>Miller, Nicholas R.</creatorcontrib><creatorcontrib>Casey, Peter C.</creatorcontrib><creatorcontrib>Gibilisco, Michael B.</creatorcontrib><title>The uncovered set and indifference in spatial models: A fuzzy set approach</title><title>Fuzzy sets and systems</title><description>The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Covering</subject><subject>Cycling</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy preferences</subject><subject>Fuzzy set theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical methods</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Pareto optimality</subject><subject>Sciences and techniques of general use</subject><subject>Social sciences</subject><subject>Spatial models</subject><subject>Telecommunications and information theory</subject><subject>Theoretical computing</subject><subject>Uncovered set</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFsugpddM9nP6qkUPyl4qeeQTSY0Zbtbk91C--vNusWjhzCZh2dm4CXkFlgMDPKHTWy8jzn77eNAzsgEyoJHecngnEwCySIGkF6SK-83jIV_zibkY7VG2jeq3aNDTT12VDaa2kZbYwJqFIaG-p3srKzpttVY-0c6p6Y_Hg-jv9u5Vqr1NbkwsvZ4c6pT8vXyvFq8RcvP1_fFfBmplCVdVAIiz6sMNRrIqqTQmM2y8HQJCiUoSAFnKtO8qlIlDWdFzpOqQECWFKVJpuR-3BvOfvfoO7G1XmFdywbb3gvIC-BJAkUaVBhV5VrvHRqxc3Yr3UEAE0NuYiNCbmLIbUCBhJm703rplayNk42y_m-QJzMAVg7e0-iFQHBv0Qmv7JCXtg5VJ3Rr_7nyA9XqgpY</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Mordeson, John N.</creator><creator>Clark, Terry D.</creator><creator>Miller, Nicholas R.</creator><creator>Casey, Peter C.</creator><creator>Gibilisco, Michael B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>The uncovered set and indifference in spatial models: A fuzzy set approach</title><author>Mordeson, John N. ; Clark, Terry D. ; Miller, Nicholas R. ; Casey, Peter C. ; Gibilisco, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Covering</topic><topic>Cycling</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy preferences</topic><topic>Fuzzy set theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical methods</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Pareto optimality</topic><topic>Sciences and techniques of general use</topic><topic>Social sciences</topic><topic>Spatial models</topic><topic>Telecommunications and information theory</topic><topic>Theoretical computing</topic><topic>Uncovered set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Clark, Terry D.</creatorcontrib><creatorcontrib>Miller, Nicholas R.</creatorcontrib><creatorcontrib>Casey, Peter C.</creatorcontrib><creatorcontrib>Gibilisco, Michael B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordeson, John N.</au><au>Clark, Terry D.</au><au>Miller, Nicholas R.</au><au>Casey, Peter C.</au><au>Gibilisco, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The uncovered set and indifference in spatial models: A fuzzy set approach</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>168</volume><issue>1</issue><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><coden>FSSYD8</coden><abstract>The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2010.10.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0114 |
ispartof | Fuzzy sets and systems, 2011-04, Vol.168 (1), p.89-101 |
issn | 0165-0114 1872-6801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671233174 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Circuit properties Combinatorics. Ordered structures Computer science control theory systems Covering Cycling Digital circuits Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Fuzzy Fuzzy logic Fuzzy preferences Fuzzy set theory Information, signal and communications theory Mathematical methods Mathematical models Mathematics Miscellaneous Order, lattices, ordered algebraic structures Pareto optimality Sciences and techniques of general use Social sciences Spatial models Telecommunications and information theory Theoretical computing Uncovered set |
title | The uncovered set and indifference in spatial models: A fuzzy set approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20uncovered%20set%20and%20indifference%20in%20spatial%20models:%20A%20fuzzy%20set%20approach&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Mordeson,%20John%20N.&rft.date=2011-04-01&rft.volume=168&rft.issue=1&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=0165-0114&rft.eissn=1872-6801&rft.coden=FSSYD8&rft_id=info:doi/10.1016/j.fss.2010.10.016&rft_dat=%3Cproquest_cross%3E1671233174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671233174&rft_id=info:pmid/&rft_els_id=S0165011410004471&rfr_iscdi=true |