The uncovered set and indifference in spatial models: A fuzzy set approach

The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2011-04, Vol.168 (1), p.89-101
Hauptverfasser: Mordeson, John N., Clark, Terry D., Miller, Nicholas R., Casey, Peter C., Gibilisco, Michael B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 89
container_title Fuzzy sets and systems
container_volume 168
creator Mordeson, John N.
Clark, Terry D.
Miller, Nicholas R.
Casey, Peter C.
Gibilisco, Michael B.
description The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions.
doi_str_mv 10.1016/j.fss.2010.10.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671233174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165011410004471</els_id><sourcerecordid>1671233174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFsugpddM9nP6qkUPyl4qeeQTSY0Zbtbk91C--vNusWjhzCZh2dm4CXkFlgMDPKHTWy8jzn77eNAzsgEyoJHecngnEwCySIGkF6SK-83jIV_zibkY7VG2jeq3aNDTT12VDaa2kZbYwJqFIaG-p3srKzpttVY-0c6p6Y_Hg-jv9u5Vqr1NbkwsvZ4c6pT8vXyvFq8RcvP1_fFfBmplCVdVAIiz6sMNRrIqqTQmM2y8HQJCiUoSAFnKtO8qlIlDWdFzpOqQECWFKVJpuR-3BvOfvfoO7G1XmFdywbb3gvIC-BJAkUaVBhV5VrvHRqxc3Yr3UEAE0NuYiNCbmLIbUCBhJm703rplayNk42y_m-QJzMAVg7e0-iFQHBv0Qmv7JCXtg5VJ3Rr_7nyA9XqgpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671233174</pqid></control><display><type>article</type><title>The uncovered set and indifference in spatial models: A fuzzy set approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mordeson, John N. ; Clark, Terry D. ; Miller, Nicholas R. ; Casey, Peter C. ; Gibilisco, Michael B.</creator><creatorcontrib>Mordeson, John N. ; Clark, Terry D. ; Miller, Nicholas R. ; Casey, Peter C. ; Gibilisco, Michael B.</creatorcontrib><description>The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2010.10.016</identifier><identifier>CODEN: FSSYD8</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Circuit properties ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Covering ; Cycling ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fuzzy ; Fuzzy logic ; Fuzzy preferences ; Fuzzy set theory ; Information, signal and communications theory ; Mathematical methods ; Mathematical models ; Mathematics ; Miscellaneous ; Order, lattices, ordered algebraic structures ; Pareto optimality ; Sciences and techniques of general use ; Social sciences ; Spatial models ; Telecommunications and information theory ; Theoretical computing ; Uncovered set</subject><ispartof>Fuzzy sets and systems, 2011-04, Vol.168 (1), p.89-101</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</citedby><cites>FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fss.2010.10.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23911086$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Clark, Terry D.</creatorcontrib><creatorcontrib>Miller, Nicholas R.</creatorcontrib><creatorcontrib>Casey, Peter C.</creatorcontrib><creatorcontrib>Gibilisco, Michael B.</creatorcontrib><title>The uncovered set and indifference in spatial models: A fuzzy set approach</title><title>Fuzzy sets and systems</title><description>The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Covering</subject><subject>Cycling</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy preferences</subject><subject>Fuzzy set theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematical methods</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Pareto optimality</subject><subject>Sciences and techniques of general use</subject><subject>Social sciences</subject><subject>Spatial models</subject><subject>Telecommunications and information theory</subject><subject>Theoretical computing</subject><subject>Uncovered set</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFsugpddM9nP6qkUPyl4qeeQTSY0Zbtbk91C--vNusWjhzCZh2dm4CXkFlgMDPKHTWy8jzn77eNAzsgEyoJHecngnEwCySIGkF6SK-83jIV_zibkY7VG2jeq3aNDTT12VDaa2kZbYwJqFIaG-p3srKzpttVY-0c6p6Y_Hg-jv9u5Vqr1NbkwsvZ4c6pT8vXyvFq8RcvP1_fFfBmplCVdVAIiz6sMNRrIqqTQmM2y8HQJCiUoSAFnKtO8qlIlDWdFzpOqQECWFKVJpuR-3BvOfvfoO7G1XmFdywbb3gvIC-BJAkUaVBhV5VrvHRqxc3Yr3UEAE0NuYiNCbmLIbUCBhJm703rplayNk42y_m-QJzMAVg7e0-iFQHBv0Qmv7JCXtg5VJ3Rr_7nyA9XqgpY</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Mordeson, John N.</creator><creator>Clark, Terry D.</creator><creator>Miller, Nicholas R.</creator><creator>Casey, Peter C.</creator><creator>Gibilisco, Michael B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>The uncovered set and indifference in spatial models: A fuzzy set approach</title><author>Mordeson, John N. ; Clark, Terry D. ; Miller, Nicholas R. ; Casey, Peter C. ; Gibilisco, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-81ee26b5edef15b37de595e59d81cea1c141e9c5d2bb4caf207623b7e1e0378f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Covering</topic><topic>Cycling</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy preferences</topic><topic>Fuzzy set theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematical methods</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Pareto optimality</topic><topic>Sciences and techniques of general use</topic><topic>Social sciences</topic><topic>Spatial models</topic><topic>Telecommunications and information theory</topic><topic>Theoretical computing</topic><topic>Uncovered set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Clark, Terry D.</creatorcontrib><creatorcontrib>Miller, Nicholas R.</creatorcontrib><creatorcontrib>Casey, Peter C.</creatorcontrib><creatorcontrib>Gibilisco, Michael B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordeson, John N.</au><au>Clark, Terry D.</au><au>Miller, Nicholas R.</au><au>Casey, Peter C.</au><au>Gibilisco, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The uncovered set and indifference in spatial models: A fuzzy set approach</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>168</volume><issue>1</issue><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><coden>FSSYD8</coden><abstract>The uncovered set was developed in order to predict outcomes when spatial models result in an empty core. In contrast to conventional approaches, fuzzy spatial models induce a substantial degree of individual and collective indifference over alternatives. Hence, existing definitions of the covering relationship return differing results. We develop a definition for a fuzzy covering relation. Our definition results in an uncovered set that is, in most cases, contained within the Pareto set. We conclude by characterizing the exceptions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2010.10.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0114
ispartof Fuzzy sets and systems, 2011-04, Vol.168 (1), p.89-101
issn 0165-0114
1872-6801
language eng
recordid cdi_proquest_miscellaneous_1671233174
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Circuit properties
Combinatorics. Ordered structures
Computer science
control theory
systems
Covering
Cycling
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Fuzzy
Fuzzy logic
Fuzzy preferences
Fuzzy set theory
Information, signal and communications theory
Mathematical methods
Mathematical models
Mathematics
Miscellaneous
Order, lattices, ordered algebraic structures
Pareto optimality
Sciences and techniques of general use
Social sciences
Spatial models
Telecommunications and information theory
Theoretical computing
Uncovered set
title The uncovered set and indifference in spatial models: A fuzzy set approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20uncovered%20set%20and%20indifference%20in%20spatial%20models:%20A%20fuzzy%20set%20approach&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Mordeson,%20John%20N.&rft.date=2011-04-01&rft.volume=168&rft.issue=1&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=0165-0114&rft.eissn=1872-6801&rft.coden=FSSYD8&rft_id=info:doi/10.1016/j.fss.2010.10.016&rft_dat=%3Cproquest_cross%3E1671233174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671233174&rft_id=info:pmid/&rft_els_id=S0165011410004471&rfr_iscdi=true