Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers
Using six- and eight-band k ⋅ p models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in p -channel inversion layers of InAs, InSb, GaAs, In...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2008-09, Vol.7 (3), p.176-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 3 |
container_start_page | 176 |
container_title | Journal of computational electronics |
container_volume | 7 |
creator | Zhang, Yan Kim, Jiseok Fischetti, M. V. |
description | Using six- and eight-band
k
⋅
p
models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in
p
-channel inversion layers of InAs, InSb, GaAs, In
0.53
Ga
0.47
As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge
p
-channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data. |
doi_str_mv | 10.1007/s10825-007-0159-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671226711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918266062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</originalsourceid><addsrcrecordid>eNp1kE1rHSEUhofSQNOkP6A7oRS6MfU4MzqzLKEfgUAXTdei3mNj8OqtZyZw_30cbmih0I2-Bx8fDm_XvQVxBULojwRikiNvkQsYZw4vunMYteQT9PrlltXMJyHHV91rogchpJADnHfxB6bAfckUacG8MG-TX5NdYskslMoebcLskdHqnM07Rktd_bJWZNt0XxKyfXExxeXIYmYH7u9tzpja8IiVNk2yx5Yuu7NgE-Gb5_ui-_nl8931N377_evN9adb7ns9Lxyhx2HwYRLeDtPsbRiEtuAVCKdQ-X5yu37YzWF0GAIEadWog0NllZtG1_cX3YeT91DL7xVpMftIHlOyGctKBpQGKdsBDX33D_pQ1prbdkbOMEmlhJKNghPlayGqGMyhxr2tRwPCbOWbU_lmi1v5ZjO_fzZbao2GarOP9OejFLqfJejGyRNH7Sn_wvp3g__LnwA9mZXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918266062</pqid></control><display><type>article</type><title>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Zhang, Yan ; Kim, Jiseok ; Fischetti, M. V.</creator><creatorcontrib>Zhang, Yan ; Kim, Jiseok ; Fischetti, M. V.</creatorcontrib><description>Using six- and eight-band
k
⋅
p
models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in
p
-channel inversion layers of InAs, InSb, GaAs, In
0.53
Ga
0.47
As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge
p
-channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-007-0159-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Computation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Density of states ; Eigenvalues ; Electrical Engineering ; Electron density of states and band structure of crystalline solids ; Electron states ; Engineering ; Exact sciences and technology ; Gallium arsenide ; Hole mobility ; Inversion layers ; Iterative methods ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Optical and Electronic Materials ; Physics ; Pseudopotentials ; Semiconductor compounds ; Theoretical</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.176-180</ispartof><rights>Springer Science+Business Media LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</citedby><cites>FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-007-0159-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918266062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,21367,23909,23910,25118,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20739217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Kim, Jiseok</creatorcontrib><creatorcontrib>Fischetti, M. V.</creatorcontrib><title>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>Using six- and eight-band
k
⋅
p
models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in
p
-channel inversion layers of InAs, InSb, GaAs, In
0.53
Ga
0.47
As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge
p
-channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data.</description><subject>Approximation</subject><subject>Computation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Density of states</subject><subject>Eigenvalues</subject><subject>Electrical Engineering</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>Hole mobility</subject><subject>Inversion layers</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Pseudopotentials</subject><subject>Semiconductor compounds</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1rHSEUhofSQNOkP6A7oRS6MfU4MzqzLKEfgUAXTdei3mNj8OqtZyZw_30cbmih0I2-Bx8fDm_XvQVxBULojwRikiNvkQsYZw4vunMYteQT9PrlltXMJyHHV91rogchpJADnHfxB6bAfckUacG8MG-TX5NdYskslMoebcLskdHqnM07Rktd_bJWZNt0XxKyfXExxeXIYmYH7u9tzpja8IiVNk2yx5Yuu7NgE-Gb5_ui-_nl8931N377_evN9adb7ns9Lxyhx2HwYRLeDtPsbRiEtuAVCKdQ-X5yu37YzWF0GAIEadWog0NllZtG1_cX3YeT91DL7xVpMftIHlOyGctKBpQGKdsBDX33D_pQ1prbdkbOMEmlhJKNghPlayGqGMyhxr2tRwPCbOWbU_lmi1v5ZjO_fzZbao2GarOP9OejFLqfJejGyRNH7Sn_wvp3g__LnwA9mZXx</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Zhang, Yan</creator><creator>Kim, Jiseok</creator><creator>Fischetti, M. V.</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</title><author>Zhang, Yan ; Kim, Jiseok ; Fischetti, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Density of states</topic><topic>Eigenvalues</topic><topic>Electrical Engineering</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>Hole mobility</topic><topic>Inversion layers</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Pseudopotentials</topic><topic>Semiconductor compounds</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Kim, Jiseok</creatorcontrib><creatorcontrib>Fischetti, M. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Kim, Jiseok</au><au>Fischetti, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>176</spage><epage>180</epage><pages>176-180</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>Using six- and eight-band
k
⋅
p
models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in
p
-channel inversion layers of InAs, InSb, GaAs, In
0.53
Ga
0.47
As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge
p
-channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-007-0159-1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2008-09, Vol.7 (3), p.176-180 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671226711 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Approximation Computation Condensed matter: electronic structure, electrical, magnetic, and optical properties Density of states Eigenvalues Electrical Engineering Electron density of states and band structure of crystalline solids Electron states Engineering Exact sciences and technology Gallium arsenide Hole mobility Inversion layers Iterative methods Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mechanical Engineering Optical and Electronic Materials Physics Pseudopotentials Semiconductor compounds Theoretical |
title | Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-consistent%20calculation%20for%20valence%20subband%20structure%20and%20hole%20mobility%20in%20p-channel%20inversion%20layers&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Zhang,%20Yan&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=176&rft.epage=180&rft.pages=176-180&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-007-0159-1&rft_dat=%3Cproquest_cross%3E2918266062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918266062&rft_id=info:pmid/&rfr_iscdi=true |