Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers

Using six- and eight-band k ⋅ p models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in p -channel inversion layers of InAs, InSb, GaAs, In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2008-09, Vol.7 (3), p.176-180
Hauptverfasser: Zhang, Yan, Kim, Jiseok, Fischetti, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 3
container_start_page 176
container_title Journal of computational electronics
container_volume 7
creator Zhang, Yan
Kim, Jiseok
Fischetti, M. V.
description Using six- and eight-band k ⋅ p models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in p -channel inversion layers of InAs, InSb, GaAs, In 0.53 Ga 0.47 As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge p -channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data.
doi_str_mv 10.1007/s10825-007-0159-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671226711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918266062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</originalsourceid><addsrcrecordid>eNp1kE1rHSEUhofSQNOkP6A7oRS6MfU4MzqzLKEfgUAXTdei3mNj8OqtZyZw_30cbmih0I2-Bx8fDm_XvQVxBULojwRikiNvkQsYZw4vunMYteQT9PrlltXMJyHHV91rogchpJADnHfxB6bAfckUacG8MG-TX5NdYskslMoebcLskdHqnM07Rktd_bJWZNt0XxKyfXExxeXIYmYH7u9tzpja8IiVNk2yx5Yuu7NgE-Gb5_ui-_nl8931N377_evN9adb7ns9Lxyhx2HwYRLeDtPsbRiEtuAVCKdQ-X5yu37YzWF0GAIEadWog0NllZtG1_cX3YeT91DL7xVpMftIHlOyGctKBpQGKdsBDX33D_pQ1prbdkbOMEmlhJKNghPlayGqGMyhxr2tRwPCbOWbU_lmi1v5ZjO_fzZbao2GarOP9OejFLqfJejGyRNH7Sn_wvp3g__LnwA9mZXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918266062</pqid></control><display><type>article</type><title>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Zhang, Yan ; Kim, Jiseok ; Fischetti, M. V.</creator><creatorcontrib>Zhang, Yan ; Kim, Jiseok ; Fischetti, M. V.</creatorcontrib><description>Using six- and eight-band k ⋅ p models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in p -channel inversion layers of InAs, InSb, GaAs, In 0.53 Ga 0.47 As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge p -channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-007-0159-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Computation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Density of states ; Eigenvalues ; Electrical Engineering ; Electron density of states and band structure of crystalline solids ; Electron states ; Engineering ; Exact sciences and technology ; Gallium arsenide ; Hole mobility ; Inversion layers ; Iterative methods ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mechanical Engineering ; Optical and Electronic Materials ; Physics ; Pseudopotentials ; Semiconductor compounds ; Theoretical</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.176-180</ispartof><rights>Springer Science+Business Media LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</citedby><cites>FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-007-0159-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918266062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,21367,23909,23910,25118,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20739217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Kim, Jiseok</creatorcontrib><creatorcontrib>Fischetti, M. V.</creatorcontrib><title>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>Using six- and eight-band k ⋅ p models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in p -channel inversion layers of InAs, InSb, GaAs, In 0.53 Ga 0.47 As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge p -channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data.</description><subject>Approximation</subject><subject>Computation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Density of states</subject><subject>Eigenvalues</subject><subject>Electrical Engineering</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>Hole mobility</subject><subject>Inversion layers</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Pseudopotentials</subject><subject>Semiconductor compounds</subject><subject>Theoretical</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1rHSEUhofSQNOkP6A7oRS6MfU4MzqzLKEfgUAXTdei3mNj8OqtZyZw_30cbmih0I2-Bx8fDm_XvQVxBULojwRikiNvkQsYZw4vunMYteQT9PrlltXMJyHHV91rogchpJADnHfxB6bAfckUacG8MG-TX5NdYskslMoebcLskdHqnM07Rktd_bJWZNt0XxKyfXExxeXIYmYH7u9tzpja8IiVNk2yx5Yuu7NgE-Gb5_ui-_nl8931N377_evN9adb7ns9Lxyhx2HwYRLeDtPsbRiEtuAVCKdQ-X5yu37YzWF0GAIEadWog0NllZtG1_cX3YeT91DL7xVpMftIHlOyGctKBpQGKdsBDX33D_pQ1prbdkbOMEmlhJKNghPlayGqGMyhxr2tRwPCbOWbU_lmi1v5ZjO_fzZbao2GarOP9OejFLqfJejGyRNH7Sn_wvp3g__LnwA9mZXx</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Zhang, Yan</creator><creator>Kim, Jiseok</creator><creator>Fischetti, M. V.</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</title><author>Zhang, Yan ; Kim, Jiseok ; Fischetti, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-e13e44cf80ca489caf407a1c610b6e6c38bd34d9f5beff1f2a657fbe6a6b85b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Density of states</topic><topic>Eigenvalues</topic><topic>Electrical Engineering</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>Hole mobility</topic><topic>Inversion layers</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Pseudopotentials</topic><topic>Semiconductor compounds</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Kim, Jiseok</creatorcontrib><creatorcontrib>Fischetti, M. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Kim, Jiseok</au><au>Fischetti, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>176</spage><epage>180</epage><pages>176-180</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>Using six- and eight-band k ⋅ p models—with parameters calibrated against the bulk band structure obtained using non-local empirical pseudopotentials—we have employed a new hybrid self-consistent method to calculate the valence subband structure in p -channel inversion layers of InAs, InSb, GaAs, In 0.53 Ga 0.47 As, and GaSb. This method involves two separate stages: first, density-of-states (DOS) of the three lowest-energy subbands (heavy, light, and split-off holes) is calculated using the triangular-well approximation. Then, the self-consistent calculation is performed using the DOS previously obtained, but shifting each subband by the amount obtained from the self-consistent eigenvalues obtained during the self-consistent iteration. Finally, we present results regarding the hole mobility in Ge p -channel inversion layers. The results are compared to those obtained employing the subband structure computed with the triangular-well approximation and also with experimental data.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-007-0159-1</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2008-09, Vol.7 (3), p.176-180
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_miscellaneous_1671226711
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Approximation
Computation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Density of states
Eigenvalues
Electrical Engineering
Electron density of states and band structure of crystalline solids
Electron states
Engineering
Exact sciences and technology
Gallium arsenide
Hole mobility
Inversion layers
Iterative methods
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mechanical Engineering
Optical and Electronic Materials
Physics
Pseudopotentials
Semiconductor compounds
Theoretical
title Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-consistent%20calculation%20for%20valence%20subband%20structure%20and%20hole%20mobility%20in%20p-channel%20inversion%20layers&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Zhang,%20Yan&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=176&rft.epage=180&rft.pages=176-180&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-007-0159-1&rft_dat=%3Cproquest_cross%3E2918266062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918266062&rft_id=info:pmid/&rfr_iscdi=true