A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers
For the finite volume discretization of a second-order elliptic model problem, we derive a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated Raviart-Thomas-...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2010-01, Vol.32 (3), p.1567-1590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1590 |
---|---|
container_issue | 3 |
container_start_page | 1567 |
container_title | SIAM journal on scientific computing |
container_volume | 32 |
creator | Jiránek, Pavel Strakos, Zdenek Vohralík, Martin |
description | For the finite volume discretization of a second-order elliptic model problem, we derive a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated Raviart-Thomas-Nedelec discrete vector field whose divergence is given by a proper weighting of the residual vector. Next, claiming that the discretization error and the algebraic one should be in balance, we construct stopping criteria for iterative algebraic solvers. An attention is paid, in particular, to the conjugate gradient method which minimizes the energy norm of the algebraic error. Using this convenient balance, we also prove the efficiency of our a posteriori estimates; i.e., we show that they also represent a lower bound, up to a generic constant, for the overall energy error. A local version of this result is also stated. This makes our approach suitable for adaptive mesh refinement which also takes into account the algebraic error. Numerical experiments illustrate the proposed estimates and construction of efficient stopping criteria for algebraic iterative solvers. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/08073706X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671226576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411550721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-ca88553fe6ed59e848b62202a4f04cad30edc79c7afff3b2e38edaf1467170f23</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKcH_4PgSQ_V_GiT9DjG1MFAYQreSpp-GRldM5N24H9vyoYHT98L78PLx4PQLSWPlHL5RBSRXBLxdYYmlJRFJmkpz8cs8kwxWVyiqxi3hFCRl2yC6hl-97GH4HxweBGCD3gRe7fTPUS87Ew7NK7b4Fm7gTpoZ06M7hq87v1-P5bz4MYFjW1qlinq3h0Ar317gBCv0YXVbYSb052iz-fFx_w1W729LOezVWY4y_vMaKWKglsQ0BQlqFzVgjHCdG5JbnTDCTRGlkZqay2vGXAFjbY0F5JKYhmfovvj7j747wFiX-1cNNC2ugM_xIomkDFRSJHQu3_o1g-hS99VShFSiMQk6OEImeBjDGCrfUhewk9FSTXKrv5k81_553Gi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880056763</pqid></control><display><type>article</type><title>A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers</title><source>SIAM Journals Online</source><creator>Jiránek, Pavel ; Strakos, Zdenek ; Vohralík, Martin</creator><creatorcontrib>Jiránek, Pavel ; Strakos, Zdenek ; Vohralík, Martin</creatorcontrib><description>For the finite volume discretization of a second-order elliptic model problem, we derive a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated Raviart-Thomas-Nedelec discrete vector field whose divergence is given by a proper weighting of the residual vector. Next, claiming that the discretization error and the algebraic one should be in balance, we construct stopping criteria for iterative algebraic solvers. An attention is paid, in particular, to the conjugate gradient method which minimizes the energy norm of the algebraic error. Using this convenient balance, we also prove the efficiency of our a posteriori estimates; i.e., we show that they also represent a lower bound, up to a generic constant, for the overall energy error. A local version of this result is also stated. This makes our approach suitable for adaptive mesh refinement which also takes into account the algebraic error. Numerical experiments illustrate the proposed estimates and construction of efficient stopping criteria for algebraic iterative solvers. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/08073706X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Construction ; Criteria ; Errors ; Estimates ; Finite element analysis ; Iterative methods ; Linear algebra ; Mathematical analysis ; Partial differential equations ; Solvers ; Studies</subject><ispartof>SIAM journal on scientific computing, 2010-01, Vol.32 (3), p.1567-1590</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-ca88553fe6ed59e848b62202a4f04cad30edc79c7afff3b2e38edaf1467170f23</citedby><cites>FETCH-LOGICAL-c324t-ca88553fe6ed59e848b62202a4f04cad30edc79c7afff3b2e38edaf1467170f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiránek, Pavel</creatorcontrib><creatorcontrib>Strakos, Zdenek</creatorcontrib><creatorcontrib>Vohralík, Martin</creatorcontrib><title>A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers</title><title>SIAM journal on scientific computing</title><description>For the finite volume discretization of a second-order elliptic model problem, we derive a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated Raviart-Thomas-Nedelec discrete vector field whose divergence is given by a proper weighting of the residual vector. Next, claiming that the discretization error and the algebraic one should be in balance, we construct stopping criteria for iterative algebraic solvers. An attention is paid, in particular, to the conjugate gradient method which minimizes the energy norm of the algebraic error. Using this convenient balance, we also prove the efficiency of our a posteriori estimates; i.e., we show that they also represent a lower bound, up to a generic constant, for the overall energy error. A local version of this result is also stated. This makes our approach suitable for adaptive mesh refinement which also takes into account the algebraic error. Numerical experiments illustrate the proposed estimates and construction of efficient stopping criteria for algebraic iterative solvers. [PUBLICATION ABSTRACT]</description><subject>Algebra</subject><subject>Construction</subject><subject>Criteria</subject><subject>Errors</subject><subject>Estimates</subject><subject>Finite element analysis</subject><subject>Iterative methods</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Solvers</subject><subject>Studies</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM9LwzAYhoMoOKcH_4PgSQ_V_GiT9DjG1MFAYQreSpp-GRldM5N24H9vyoYHT98L78PLx4PQLSWPlHL5RBSRXBLxdYYmlJRFJmkpz8cs8kwxWVyiqxi3hFCRl2yC6hl-97GH4HxweBGCD3gRe7fTPUS87Ew7NK7b4Fm7gTpoZ06M7hq87v1-P5bz4MYFjW1qlinq3h0Ar317gBCv0YXVbYSb052iz-fFx_w1W729LOezVWY4y_vMaKWKglsQ0BQlqFzVgjHCdG5JbnTDCTRGlkZqay2vGXAFjbY0F5JKYhmfovvj7j747wFiX-1cNNC2ugM_xIomkDFRSJHQu3_o1g-hS99VShFSiMQk6OEImeBjDGCrfUhewk9FSTXKrv5k81_553Gi</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Jiránek, Pavel</creator><creator>Strakos, Zdenek</creator><creator>Vohralík, Martin</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers</title><author>Jiránek, Pavel ; Strakos, Zdenek ; Vohralík, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-ca88553fe6ed59e848b62202a4f04cad30edc79c7afff3b2e38edaf1467170f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Construction</topic><topic>Criteria</topic><topic>Errors</topic><topic>Estimates</topic><topic>Finite element analysis</topic><topic>Iterative methods</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Solvers</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiránek, Pavel</creatorcontrib><creatorcontrib>Strakos, Zdenek</creatorcontrib><creatorcontrib>Vohralík, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiránek, Pavel</au><au>Strakos, Zdenek</au><au>Vohralík, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>32</volume><issue>3</issue><spage>1567</spage><epage>1590</epage><pages>1567-1590</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>For the finite volume discretization of a second-order elliptic model problem, we derive a posteriori error estimates which take into account an inexact solution of the associated linear algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated Raviart-Thomas-Nedelec discrete vector field whose divergence is given by a proper weighting of the residual vector. Next, claiming that the discretization error and the algebraic one should be in balance, we construct stopping criteria for iterative algebraic solvers. An attention is paid, in particular, to the conjugate gradient method which minimizes the energy norm of the algebraic error. Using this convenient balance, we also prove the efficiency of our a posteriori estimates; i.e., we show that they also represent a lower bound, up to a generic constant, for the overall energy error. A local version of this result is also stated. This makes our approach suitable for adaptive mesh refinement which also takes into account the algebraic error. Numerical experiments illustrate the proposed estimates and construction of efficient stopping criteria for algebraic iterative solvers. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/08073706X</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2010-01, Vol.32 (3), p.1567-1590 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671226576 |
source | SIAM Journals Online |
subjects | Algebra Construction Criteria Errors Estimates Finite element analysis Iterative methods Linear algebra Mathematical analysis Partial differential equations Solvers Studies |
title | A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Posteriori%20Error%20Estimates%20Including%20Algebraic%20Error%20and%20Stopping%20Criteria%20for%20Iterative%20Solvers&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Jir%C3%A1nek,%20Pavel&rft.date=2010-01-01&rft.volume=32&rft.issue=3&rft.spage=1567&rft.epage=1590&rft.pages=1567-1590&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/08073706X&rft_dat=%3Cproquest_cross%3E2411550721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880056763&rft_id=info:pmid/&rfr_iscdi=true |