Exact leaf powers

We define and study the new notion of exact k -leaf powers where a graph G = ( V G , E G ) is an exact k -leaf power if and only if there exists a tree T = ( V T , E T ) — an exact k -leaf root of G — whose set of leaves equals V G such that u v ∈ E G holds for u , v ∈ V G if and only if the distanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2010-06, Vol.411 (31), p.2968-2977
Hauptverfasser: Brandstädt, Andreas, Le, Van Bang, Rautenbach, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2977
container_issue 31
container_start_page 2968
container_title Theoretical computer science
container_volume 411
creator Brandstädt, Andreas
Le, Van Bang
Rautenbach, Dieter
description We define and study the new notion of exact k -leaf powers where a graph G = ( V G , E G ) is an exact k -leaf power if and only if there exists a tree T = ( V T , E T ) — an exact k -leaf root of G — whose set of leaves equals V G such that u v ∈ E G holds for u , v ∈ V G if and only if the distance of u and v in T is exactly k . This new notion is closely related to but different from leaf powers and neighbourhood subtree tolerance graphs. We prove characterizations of exact 3 - and 4 -leaf powers which imply that such graphs can be recognized in linear time and that also the corresponding exact leaf roots can be found in linear time. Furthermore, we characterize all exact 5 -leaf roots of chordless cycles and derive several properties of exact 5 -leaf powers.
doi_str_mv 10.1016/j.tcs.2010.04.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671225938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439751000232X</els_id><sourcerecordid>1671225938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-37939db51fdd1991bb263dc6758a2deb3e8e6451dd8452267b275a572e0ccb3a3</originalsourceid><addsrcrecordid>eNp9j01LAzEQhoMoWKsHj956Ebzsmkw2yQZPUuoHFLzoOWSTWUjZdmuy9ePfN2WLR-cyDDzvOzyE3DBaMsrk_aocXCqB5ptWJQV1QiasVroA0NUpmVBOq4JrJc7JRUormkcoOSHXix_rhlmHtp1t-2-M6ZKctbZLeHXcU_LxtHifvxTLt-fX-eOycFzSoeBKc-0bwVrvmdasaUBy76QStQWPDccaZSWY93UlAKRqQAkrFCB1ruGWT8nd2LuN_ecO02DWITnsOrvBfpcMk4oBCM3rjLIRdbFPKWJrtjGsbfw1jJqDvlmZrG8O-oZWJuvnzO2x3iZnuzbajQvpLwhQayElZO5h5DC7fgWMJrmAG4c-RHSD8X3458se785s-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671225938</pqid></control><display><type>article</type><title>Exact leaf powers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Brandstädt, Andreas ; Le, Van Bang ; Rautenbach, Dieter</creator><creatorcontrib>Brandstädt, Andreas ; Le, Van Bang ; Rautenbach, Dieter</creatorcontrib><description>We define and study the new notion of exact k -leaf powers where a graph G = ( V G , E G ) is an exact k -leaf power if and only if there exists a tree T = ( V T , E T ) — an exact k -leaf root of G — whose set of leaves equals V G such that u v ∈ E G holds for u , v ∈ V G if and only if the distance of u and v in T is exactly k . This new notion is closely related to but different from leaf powers and neighbourhood subtree tolerance graphs. We prove characterizations of exact 3 - and 4 -leaf powers which imply that such graphs can be recognized in linear time and that also the corresponding exact leaf roots can be found in linear time. Furthermore, we characterize all exact 5 -leaf roots of chordless cycles and derive several properties of exact 5 -leaf powers.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2010.04.027</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; C (programming language) ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Forbidden induced subgraph ; Graph power ; Graph theory ; Graphs ; Information retrieval. Graph ; Leaf power ; Leaf root ; Leaves ; Mathematics ; Miscellaneous ; Phylogenetic tree ; Phylogeny ; Roots ; Sciences and techniques of general use ; Theoretical computing ; Tolerances ; Trees</subject><ispartof>Theoretical computer science, 2010-06, Vol.411 (31), p.2968-2977</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-37939db51fdd1991bb263dc6758a2deb3e8e6451dd8452267b275a572e0ccb3a3</citedby><cites>FETCH-LOGICAL-c360t-37939db51fdd1991bb263dc6758a2deb3e8e6451dd8452267b275a572e0ccb3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2010.04.027$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22895662$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandstädt, Andreas</creatorcontrib><creatorcontrib>Le, Van Bang</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><title>Exact leaf powers</title><title>Theoretical computer science</title><description>We define and study the new notion of exact k -leaf powers where a graph G = ( V G , E G ) is an exact k -leaf power if and only if there exists a tree T = ( V T , E T ) — an exact k -leaf root of G — whose set of leaves equals V G such that u v ∈ E G holds for u , v ∈ V G if and only if the distance of u and v in T is exactly k . This new notion is closely related to but different from leaf powers and neighbourhood subtree tolerance graphs. We prove characterizations of exact 3 - and 4 -leaf powers which imply that such graphs can be recognized in linear time and that also the corresponding exact leaf roots can be found in linear time. Furthermore, we characterize all exact 5 -leaf roots of chordless cycles and derive several properties of exact 5 -leaf powers.</description><subject>Applied sciences</subject><subject>C (programming language)</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Forbidden induced subgraph</subject><subject>Graph power</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Leaf power</subject><subject>Leaf root</subject><subject>Leaves</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Phylogenetic tree</subject><subject>Phylogeny</subject><subject>Roots</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>Tolerances</subject><subject>Trees</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQhoMoWKsHj956Ebzsmkw2yQZPUuoHFLzoOWSTWUjZdmuy9ePfN2WLR-cyDDzvOzyE3DBaMsrk_aocXCqB5ptWJQV1QiasVroA0NUpmVBOq4JrJc7JRUormkcoOSHXix_rhlmHtp1t-2-M6ZKctbZLeHXcU_LxtHifvxTLt-fX-eOycFzSoeBKc-0bwVrvmdasaUBy76QStQWPDccaZSWY93UlAKRqQAkrFCB1ruGWT8nd2LuN_ecO02DWITnsOrvBfpcMk4oBCM3rjLIRdbFPKWJrtjGsbfw1jJqDvlmZrG8O-oZWJuvnzO2x3iZnuzbajQvpLwhQayElZO5h5DC7fgWMJrmAG4c-RHSD8X3458se785s-g</recordid><startdate>20100628</startdate><enddate>20100628</enddate><creator>Brandstädt, Andreas</creator><creator>Le, Van Bang</creator><creator>Rautenbach, Dieter</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100628</creationdate><title>Exact leaf powers</title><author>Brandstädt, Andreas ; Le, Van Bang ; Rautenbach, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-37939db51fdd1991bb263dc6758a2deb3e8e6451dd8452267b275a572e0ccb3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>C (programming language)</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Forbidden induced subgraph</topic><topic>Graph power</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Leaf power</topic><topic>Leaf root</topic><topic>Leaves</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Phylogenetic tree</topic><topic>Phylogeny</topic><topic>Roots</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>Tolerances</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandstädt, Andreas</creatorcontrib><creatorcontrib>Le, Van Bang</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandstädt, Andreas</au><au>Le, Van Bang</au><au>Rautenbach, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact leaf powers</atitle><jtitle>Theoretical computer science</jtitle><date>2010-06-28</date><risdate>2010</risdate><volume>411</volume><issue>31</issue><spage>2968</spage><epage>2977</epage><pages>2968-2977</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We define and study the new notion of exact k -leaf powers where a graph G = ( V G , E G ) is an exact k -leaf power if and only if there exists a tree T = ( V T , E T ) — an exact k -leaf root of G — whose set of leaves equals V G such that u v ∈ E G holds for u , v ∈ V G if and only if the distance of u and v in T is exactly k . This new notion is closely related to but different from leaf powers and neighbourhood subtree tolerance graphs. We prove characterizations of exact 3 - and 4 -leaf powers which imply that such graphs can be recognized in linear time and that also the corresponding exact leaf roots can be found in linear time. Furthermore, we characterize all exact 5 -leaf roots of chordless cycles and derive several properties of exact 5 -leaf powers.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2010.04.027</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2010-06, Vol.411 (31), p.2968-2977
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_1671225938
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Applied sciences
C (programming language)
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Forbidden induced subgraph
Graph power
Graph theory
Graphs
Information retrieval. Graph
Leaf power
Leaf root
Leaves
Mathematics
Miscellaneous
Phylogenetic tree
Phylogeny
Roots
Sciences and techniques of general use
Theoretical computing
Tolerances
Trees
title Exact leaf powers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20leaf%20powers&rft.jtitle=Theoretical%20computer%20science&rft.au=Brandst%C3%A4dt,%20Andreas&rft.date=2010-06-28&rft.volume=411&rft.issue=31&rft.spage=2968&rft.epage=2977&rft.pages=2968-2977&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2010.04.027&rft_dat=%3Cproquest_cross%3E1671225938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671225938&rft_id=info:pmid/&rft_els_id=S030439751000232X&rfr_iscdi=true