Sentence Topics Based Knowledge Acquisition for Question Answering

This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as max...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2008/04/01, Vol.E91.D(4), pp.969-975
Hauptverfasser: OH, Hyo-Jung, YUN, Bo-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 4
container_start_page 969
container_title IEICE Transactions on Information and Systems
container_volume E91.D
creator OH, Hyo-Jung
YUN, Bo-Hyun
description This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task.
doi_str_mv 10.1093/ietisy/e91-d.4.969
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671225926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671225926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9b22fb4c114893bd0aa46386dd2d2da53a34d1a052e1a863857b201d5a37147c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxA6yyZJPWY8dJvCzvRyWEKGvLsSfFKDjFTlXx9xgC1SxGo7lnNDqEnAGdApV85nBw8WuGEnI7LaaylHtkAlUhcuAl7JMJlVDmteDskBzF-E4p1AzEhFy8oB_QG8yW_dqZmF3oiDZ79P22Q7vCbG4-Ny66wfU-a_uQPW8w_g5zH7cYnF-dkINWdxFP__oxeb25Xl7e5Yun2_vL-SI3gsohlw1jbVMYgKKWvLFU66LkdWktS6UF17ywoKlgCLpOG1E1jIIVmldQVIYfk_Px7jr0nz9fqA8XDXad9thvooKyAsaEZGWKsjFqQh9jwFatg_vQ4UsBVT_C1ChMJWHKqkIlYQl6GKH3OOgV7hAdBmc6VEPQPjrfqusEXSXovyd4FzJvOij0_BupaXvN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671225926</pqid></control><display><type>article</type><title>Sentence Topics Based Knowledge Acquisition for Question Answering</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>OH, Hyo-Jung ; YUN, Bo-Hyun</creator><creatorcontrib>OH, Hyo-Jung ; YUN, Bo-Hyun</creatorcontrib><description>This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task.</description><identifier>ISSN: 0916-8532</identifier><identifier>ISSN: 1745-1361</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1093/ietisy/e91-d.4.969</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Extraction ; Knowledge acquisition ; Machine learning ; Mathematical models ; Maximum entropy ; Networks ; question answering ; Sentences ; Tasks</subject><ispartof>IEICE Transactions on Information and Systems, 2008/04/01, Vol.E91.D(4), pp.969-975</ispartof><rights>2008 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>OH, Hyo-Jung</creatorcontrib><creatorcontrib>YUN, Bo-Hyun</creatorcontrib><title>Sentence Topics Based Knowledge Acquisition for Question Answering</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task.</description><subject>Extraction</subject><subject>Knowledge acquisition</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Networks</subject><subject>question answering</subject><subject>Sentences</subject><subject>Tasks</subject><issn>0916-8532</issn><issn>1745-1361</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuXxA6yyZJPWY8dJvCzvRyWEKGvLsSfFKDjFTlXx9xgC1SxGo7lnNDqEnAGdApV85nBw8WuGEnI7LaaylHtkAlUhcuAl7JMJlVDmteDskBzF-E4p1AzEhFy8oB_QG8yW_dqZmF3oiDZ79P22Q7vCbG4-Ny66wfU-a_uQPW8w_g5zH7cYnF-dkINWdxFP__oxeb25Xl7e5Yun2_vL-SI3gsohlw1jbVMYgKKWvLFU66LkdWktS6UF17ywoKlgCLpOG1E1jIIVmldQVIYfk_Px7jr0nz9fqA8XDXad9thvooKyAsaEZGWKsjFqQh9jwFatg_vQ4UsBVT_C1ChMJWHKqkIlYQl6GKH3OOgV7hAdBmc6VEPQPjrfqusEXSXovyd4FzJvOij0_BupaXvN</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>OH, Hyo-Jung</creator><creator>YUN, Bo-Hyun</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>Sentence Topics Based Knowledge Acquisition for Question Answering</title><author>OH, Hyo-Jung ; YUN, Bo-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9b22fb4c114893bd0aa46386dd2d2da53a34d1a052e1a863857b201d5a37147c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Extraction</topic><topic>Knowledge acquisition</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Networks</topic><topic>question answering</topic><topic>Sentences</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OH, Hyo-Jung</creatorcontrib><creatorcontrib>YUN, Bo-Hyun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OH, Hyo-Jung</au><au>YUN, Bo-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sentence Topics Based Knowledge Acquisition for Question Answering</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2008</date><risdate>2008</risdate><volume>E91.D</volume><issue>4</issue><spage>969</spage><epage>975</epage><pages>969-975</pages><issn>0916-8532</issn><issn>1745-1361</issn><eissn>1745-1361</eissn><abstract>This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1093/ietisy/e91-d.4.969</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2008/04/01, Vol.E91.D(4), pp.969-975
issn 0916-8532
1745-1361
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1671225926
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Extraction
Knowledge acquisition
Machine learning
Mathematical models
Maximum entropy
Networks
question answering
Sentences
Tasks
title Sentence Topics Based Knowledge Acquisition for Question Answering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sentence%20Topics%20Based%20Knowledge%20Acquisition%20for%20Question%20Answering&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=OH,%20Hyo-Jung&rft.date=2008&rft.volume=E91.D&rft.issue=4&rft.spage=969&rft.epage=975&rft.pages=969-975&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1093/ietisy/e91-d.4.969&rft_dat=%3Cproquest_cross%3E1671225926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671225926&rft_id=info:pmid/&rfr_iscdi=true