Sentence Topics Based Knowledge Acquisition for Question Answering
This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as max...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2008/04/01, Vol.E91.D(4), pp.969-975 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 4 |
container_start_page | 969 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E91.D |
creator | OH, Hyo-Jung YUN, Bo-Hyun |
description | This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task. |
doi_str_mv | 10.1093/ietisy/e91-d.4.969 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671225926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671225926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9b22fb4c114893bd0aa46386dd2d2da53a34d1a052e1a863857b201d5a37147c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxA6yyZJPWY8dJvCzvRyWEKGvLsSfFKDjFTlXx9xgC1SxGo7lnNDqEnAGdApV85nBw8WuGEnI7LaaylHtkAlUhcuAl7JMJlVDmteDskBzF-E4p1AzEhFy8oB_QG8yW_dqZmF3oiDZ79P22Q7vCbG4-Ny66wfU-a_uQPW8w_g5zH7cYnF-dkINWdxFP__oxeb25Xl7e5Yun2_vL-SI3gsohlw1jbVMYgKKWvLFU66LkdWktS6UF17ywoKlgCLpOG1E1jIIVmldQVIYfk_Px7jr0nz9fqA8XDXad9thvooKyAsaEZGWKsjFqQh9jwFatg_vQ4UsBVT_C1ChMJWHKqkIlYQl6GKH3OOgV7hAdBmc6VEPQPjrfqusEXSXovyd4FzJvOij0_BupaXvN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671225926</pqid></control><display><type>article</type><title>Sentence Topics Based Knowledge Acquisition for Question Answering</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>OH, Hyo-Jung ; YUN, Bo-Hyun</creator><creatorcontrib>OH, Hyo-Jung ; YUN, Bo-Hyun</creatorcontrib><description>This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task.</description><identifier>ISSN: 0916-8532</identifier><identifier>ISSN: 1745-1361</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1093/ietisy/e91-d.4.969</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Extraction ; Knowledge acquisition ; Machine learning ; Mathematical models ; Maximum entropy ; Networks ; question answering ; Sentences ; Tasks</subject><ispartof>IEICE Transactions on Information and Systems, 2008/04/01, Vol.E91.D(4), pp.969-975</ispartof><rights>2008 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>OH, Hyo-Jung</creatorcontrib><creatorcontrib>YUN, Bo-Hyun</creatorcontrib><title>Sentence Topics Based Knowledge Acquisition for Question Answering</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task.</description><subject>Extraction</subject><subject>Knowledge acquisition</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Networks</subject><subject>question answering</subject><subject>Sentences</subject><subject>Tasks</subject><issn>0916-8532</issn><issn>1745-1361</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuXxA6yyZJPWY8dJvCzvRyWEKGvLsSfFKDjFTlXx9xgC1SxGo7lnNDqEnAGdApV85nBw8WuGEnI7LaaylHtkAlUhcuAl7JMJlVDmteDskBzF-E4p1AzEhFy8oB_QG8yW_dqZmF3oiDZ79P22Q7vCbG4-Ny66wfU-a_uQPW8w_g5zH7cYnF-dkINWdxFP__oxeb25Xl7e5Yun2_vL-SI3gsohlw1jbVMYgKKWvLFU66LkdWktS6UF17ywoKlgCLpOG1E1jIIVmldQVIYfk_Px7jr0nz9fqA8XDXad9thvooKyAsaEZGWKsjFqQh9jwFatg_vQ4UsBVT_C1ChMJWHKqkIlYQl6GKH3OOgV7hAdBmc6VEPQPjrfqusEXSXovyd4FzJvOij0_BupaXvN</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>OH, Hyo-Jung</creator><creator>YUN, Bo-Hyun</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2008</creationdate><title>Sentence Topics Based Knowledge Acquisition for Question Answering</title><author>OH, Hyo-Jung ; YUN, Bo-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9b22fb4c114893bd0aa46386dd2d2da53a34d1a052e1a863857b201d5a37147c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Extraction</topic><topic>Knowledge acquisition</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Networks</topic><topic>question answering</topic><topic>Sentences</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OH, Hyo-Jung</creatorcontrib><creatorcontrib>YUN, Bo-Hyun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OH, Hyo-Jung</au><au>YUN, Bo-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sentence Topics Based Knowledge Acquisition for Question Answering</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2008</date><risdate>2008</risdate><volume>E91.D</volume><issue>4</issue><spage>969</spage><epage>975</epage><pages>969-975</pages><issn>0916-8532</issn><issn>1745-1361</issn><eissn>1745-1361</eissn><abstract>This paper presents a knowledge acquisition method using sentence topics for question answering. We define templates for information extraction by the Korean concept network semi-automatically. Moreover, we propose the two-phase information extraction model by the hybrid machine learning such as maximum entropy and conditional random fields. In our experiments, we examined the role of sentence topics in the template-filling task for information extraction. Our experimental result shows the improvement of 18% in F-score and 434% in training speed over the plain CRF-based method for the extraction task. In addition, our result shows the improvement of 8% in F-score for the subsequent QA task.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1093/ietisy/e91-d.4.969</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2008/04/01, Vol.E91.D(4), pp.969-975 |
issn | 0916-8532 1745-1361 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671225926 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Extraction Knowledge acquisition Machine learning Mathematical models Maximum entropy Networks question answering Sentences Tasks |
title | Sentence Topics Based Knowledge Acquisition for Question Answering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sentence%20Topics%20Based%20Knowledge%20Acquisition%20for%20Question%20Answering&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=OH,%20Hyo-Jung&rft.date=2008&rft.volume=E91.D&rft.issue=4&rft.spage=969&rft.epage=975&rft.pages=969-975&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1093/ietisy/e91-d.4.969&rft_dat=%3Cproquest_cross%3E1671225926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671225926&rft_id=info:pmid/&rfr_iscdi=true |