An efficient, chromatic clustering-based background model for embedded vision platforms
People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improv...
Gespeichert in:
Veröffentlicht in: | Computer vision and image understanding 2010-11, Vol.114 (11), p.1152-1163 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1163 |
---|---|
container_issue | 11 |
container_start_page | 1152 |
container_title | Computer vision and image understanding |
container_volume | 114 |
creator | Valentine, Brian Apewokin, Senyo Wills, Linda Wills, Scott |
description | People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems. |
doi_str_mv | 10.1016/j.cviu.2010.03.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671225587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314210000913</els_id><sourcerecordid>1671225587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxYMoWKv_gKccPZg6k80mKXgp4hcUvCh6W_Zjtm5NsnU3Kfjfm1DPnmZ4897A-yXJJcICAcub7ULv3bDIYRSALQCLo2SGsIQsZ_zjeNqrKmNY5KfJWYxbAMRiibPkfdWlZK3Tjrr-OtWfwbeydzrVzRB7Cq7bZEpGMqmS-msT_NCZtPWGmtT6kFKryJjxunfR-S7dNbIf9TaeJydWNpEu_uY8eXu4f717ytYvj893q3WmGWN9VkOFBoqCqyXXvLTcEi85KG4LQwQV5AyURmLWlkgINVc5Q6Ja2rpChWyeXB3-7oL_Hij2onVRU9PIjvwQBZYV5jnndTVa84NVBx9jICt2wbUy_AgEMVEUWzFRFBNFAUyMFMfQ7SFEY4m9oyDihEqTcYF0L4x3_8V_AYQze_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671225587</pqid></control><display><type>article</type><title>An efficient, chromatic clustering-based background model for embedded vision platforms</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Valentine, Brian ; Apewokin, Senyo ; Wills, Linda ; Wills, Scott</creator><creatorcontrib>Valentine, Brian ; Apewokin, Senyo ; Wills, Linda ; Wills, Scott</creatorcontrib><description>People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.03.014</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Background modeling ; Computation ; Computer vision ; Cost analysis ; Embedded computing ; Extraction ; Matching ; Multimodal ; Perception ; Platforms ; Vision</subject><ispartof>Computer vision and image understanding, 2010-11, Vol.114 (11), p.1152-1163</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</citedby><cites>FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cviu.2010.03.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Valentine, Brian</creatorcontrib><creatorcontrib>Apewokin, Senyo</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><title>An efficient, chromatic clustering-based background model for embedded vision platforms</title><title>Computer vision and image understanding</title><description>People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems.</description><subject>Background modeling</subject><subject>Computation</subject><subject>Computer vision</subject><subject>Cost analysis</subject><subject>Embedded computing</subject><subject>Extraction</subject><subject>Matching</subject><subject>Multimodal</subject><subject>Perception</subject><subject>Platforms</subject><subject>Vision</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxYMoWKv_gKccPZg6k80mKXgp4hcUvCh6W_Zjtm5NsnU3Kfjfm1DPnmZ4897A-yXJJcICAcub7ULv3bDIYRSALQCLo2SGsIQsZ_zjeNqrKmNY5KfJWYxbAMRiibPkfdWlZK3Tjrr-OtWfwbeydzrVzRB7Cq7bZEpGMqmS-msT_NCZtPWGmtT6kFKryJjxunfR-S7dNbIf9TaeJydWNpEu_uY8eXu4f717ytYvj893q3WmGWN9VkOFBoqCqyXXvLTcEi85KG4LQwQV5AyURmLWlkgINVc5Q6Ja2rpChWyeXB3-7oL_Hij2onVRU9PIjvwQBZYV5jnndTVa84NVBx9jICt2wbUy_AgEMVEUWzFRFBNFAUyMFMfQ7SFEY4m9oyDihEqTcYF0L4x3_8V_AYQze_g</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Valentine, Brian</creator><creator>Apewokin, Senyo</creator><creator>Wills, Linda</creator><creator>Wills, Scott</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201011</creationdate><title>An efficient, chromatic clustering-based background model for embedded vision platforms</title><author>Valentine, Brian ; Apewokin, Senyo ; Wills, Linda ; Wills, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Background modeling</topic><topic>Computation</topic><topic>Computer vision</topic><topic>Cost analysis</topic><topic>Embedded computing</topic><topic>Extraction</topic><topic>Matching</topic><topic>Multimodal</topic><topic>Perception</topic><topic>Platforms</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valentine, Brian</creatorcontrib><creatorcontrib>Apewokin, Senyo</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valentine, Brian</au><au>Apewokin, Senyo</au><au>Wills, Linda</au><au>Wills, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient, chromatic clustering-based background model for embedded vision platforms</atitle><jtitle>Computer vision and image understanding</jtitle><date>2010-11</date><risdate>2010</risdate><volume>114</volume><issue>11</issue><spage>1152</spage><epage>1163</epage><pages>1152-1163</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.03.014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 2010-11, Vol.114 (11), p.1152-1163 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671225587 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Background modeling Computation Computer vision Cost analysis Embedded computing Extraction Matching Multimodal Perception Platforms Vision |
title | An efficient, chromatic clustering-based background model for embedded vision platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient,%20chromatic%20clustering-based%20background%20model%20for%20embedded%20vision%20platforms&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Valentine,%20Brian&rft.date=2010-11&rft.volume=114&rft.issue=11&rft.spage=1152&rft.epage=1163&rft.pages=1152-1163&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2010.03.014&rft_dat=%3Cproquest_cross%3E1671225587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671225587&rft_id=info:pmid/&rft_els_id=S1077314210000913&rfr_iscdi=true |