An efficient, chromatic clustering-based background model for embedded vision platforms

People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 2010-11, Vol.114 (11), p.1152-1163
Hauptverfasser: Valentine, Brian, Apewokin, Senyo, Wills, Linda, Wills, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1163
container_issue 11
container_start_page 1152
container_title Computer vision and image understanding
container_volume 114
creator Valentine, Brian
Apewokin, Senyo
Wills, Linda
Wills, Scott
description People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems.
doi_str_mv 10.1016/j.cviu.2010.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671225587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314210000913</els_id><sourcerecordid>1671225587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxYMoWKv_gKccPZg6k80mKXgp4hcUvCh6W_Zjtm5NsnU3Kfjfm1DPnmZ4897A-yXJJcICAcub7ULv3bDIYRSALQCLo2SGsIQsZ_zjeNqrKmNY5KfJWYxbAMRiibPkfdWlZK3Tjrr-OtWfwbeydzrVzRB7Cq7bZEpGMqmS-msT_NCZtPWGmtT6kFKryJjxunfR-S7dNbIf9TaeJydWNpEu_uY8eXu4f717ytYvj893q3WmGWN9VkOFBoqCqyXXvLTcEi85KG4LQwQV5AyURmLWlkgINVc5Q6Ja2rpChWyeXB3-7oL_Hij2onVRU9PIjvwQBZYV5jnndTVa84NVBx9jICt2wbUy_AgEMVEUWzFRFBNFAUyMFMfQ7SFEY4m9oyDihEqTcYF0L4x3_8V_AYQze_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671225587</pqid></control><display><type>article</type><title>An efficient, chromatic clustering-based background model for embedded vision platforms</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Valentine, Brian ; Apewokin, Senyo ; Wills, Linda ; Wills, Scott</creator><creatorcontrib>Valentine, Brian ; Apewokin, Senyo ; Wills, Linda ; Wills, Scott</creatorcontrib><description>People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2010.03.014</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Background modeling ; Computation ; Computer vision ; Cost analysis ; Embedded computing ; Extraction ; Matching ; Multimodal ; Perception ; Platforms ; Vision</subject><ispartof>Computer vision and image understanding, 2010-11, Vol.114 (11), p.1152-1163</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</citedby><cites>FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cviu.2010.03.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Valentine, Brian</creatorcontrib><creatorcontrib>Apewokin, Senyo</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><title>An efficient, chromatic clustering-based background model for embedded vision platforms</title><title>Computer vision and image understanding</title><description>People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems.</description><subject>Background modeling</subject><subject>Computation</subject><subject>Computer vision</subject><subject>Cost analysis</subject><subject>Embedded computing</subject><subject>Extraction</subject><subject>Matching</subject><subject>Multimodal</subject><subject>Perception</subject><subject>Platforms</subject><subject>Vision</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxYMoWKv_gKccPZg6k80mKXgp4hcUvCh6W_Zjtm5NsnU3Kfjfm1DPnmZ4897A-yXJJcICAcub7ULv3bDIYRSALQCLo2SGsIQsZ_zjeNqrKmNY5KfJWYxbAMRiibPkfdWlZK3Tjrr-OtWfwbeydzrVzRB7Cq7bZEpGMqmS-msT_NCZtPWGmtT6kFKryJjxunfR-S7dNbIf9TaeJydWNpEu_uY8eXu4f717ytYvj893q3WmGWN9VkOFBoqCqyXXvLTcEi85KG4LQwQV5AyURmLWlkgINVc5Q6Ja2rpChWyeXB3-7oL_Hij2onVRU9PIjvwQBZYV5jnndTVa84NVBx9jICt2wbUy_AgEMVEUWzFRFBNFAUyMFMfQ7SFEY4m9oyDihEqTcYF0L4x3_8V_AYQze_g</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Valentine, Brian</creator><creator>Apewokin, Senyo</creator><creator>Wills, Linda</creator><creator>Wills, Scott</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201011</creationdate><title>An efficient, chromatic clustering-based background model for embedded vision platforms</title><author>Valentine, Brian ; Apewokin, Senyo ; Wills, Linda ; Wills, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8071d0445b95c56f5fe5650b5f4dee070230bc1e3ff61e1085b231ee8af871b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Background modeling</topic><topic>Computation</topic><topic>Computer vision</topic><topic>Cost analysis</topic><topic>Embedded computing</topic><topic>Extraction</topic><topic>Matching</topic><topic>Multimodal</topic><topic>Perception</topic><topic>Platforms</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valentine, Brian</creatorcontrib><creatorcontrib>Apewokin, Senyo</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valentine, Brian</au><au>Apewokin, Senyo</au><au>Wills, Linda</au><au>Wills, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient, chromatic clustering-based background model for embedded vision platforms</atitle><jtitle>Computer vision and image understanding</jtitle><date>2010-11</date><risdate>2010</risdate><volume>114</volume><issue>11</issue><spage>1152</spage><epage>1163</epage><pages>1152-1163</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>People naturally identify rapidly moving foreground and ignore persistent background. Identifying background pixels belonging to stable, chromatically clustered objects is important for efficient scene processing. This paper presents a technique that exploits this facet of human perception to improve performance and efficiency of background modeling on embedded vision platforms. Previous work on the Multimodal Mean (MMean) approach achieves high quality foreground extraction (comparable to Mixture of Gaussians (MoG)) using fast integer computation and a compact memory representation. This paper introduces a more efficient hybrid technique that combines MMean with palette-based background matching based on the chromatic distribution in the scene. This hybrid technique suppresses computationally expensive model update and adaptation, providing a 45% execution time speedup over MMean. It reduces model storage requirements by 58% over a MMean-only implementation. This background analysis enables higher frame rate, lower cost embedded vision systems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2010.03.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2010-11, Vol.114 (11), p.1152-1163
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_1671225587
source ScienceDirect Journals (5 years ago - present)
subjects Background modeling
Computation
Computer vision
Cost analysis
Embedded computing
Extraction
Matching
Multimodal
Perception
Platforms
Vision
title An efficient, chromatic clustering-based background model for embedded vision platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient,%20chromatic%20clustering-based%20background%20model%20for%20embedded%20vision%20platforms&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Valentine,%20Brian&rft.date=2010-11&rft.volume=114&rft.issue=11&rft.spage=1152&rft.epage=1163&rft.pages=1152-1163&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2010.03.014&rft_dat=%3Cproquest_cross%3E1671225587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671225587&rft_id=info:pmid/&rft_els_id=S1077314210000913&rfr_iscdi=true