Classifications of (n + k)-dimensional metric n-Lie algebras

We study the structure of isotropic ideals of the metric n-Lie algebra over the complex field for n 2. Based on the study of isotropic ideals of metric n-Lie algebras in this paper, we obtain the following. (i) Let be the Levi decomposition and without semi-simple ideals. If n > 2, is perfect and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2013-04, Vol.46 (14), p.145202-11
Hauptverfasser: Bai, Ruipu, Wu, Wanqing, Chen, Zhiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 14
container_start_page 145202
container_title Journal of physics. A, Mathematical and theoretical
container_volume 46
creator Bai, Ruipu
Wu, Wanqing
Chen, Zhiqi
description We study the structure of isotropic ideals of the metric n-Lie algebra over the complex field for n 2. Based on the study of isotropic ideals of metric n-Lie algebras in this paper, we obtain the following. (i) Let be the Levi decomposition and without semi-simple ideals. If n > 2, is perfect and is isotropic, then is the unique isomaximal ideal and , and the metric dimension of is m. If is indecomposable, then is isomorphic to as an -module in the regular representation. (ii) If with 2 k n + 1, then . If is unsolvable, then is reductive. If the center of is isotropic, then (iii) There are only three classes of (n + k)-dimensional metric n-Lie algebras for 2 k n + 1 and n > 2, and the concrete multiplications for each class are provided.
doi_str_mv 10.1088/1751-8113/46/14/145202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669913104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669913104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-1c6ce9f98eb37549d153b858ea3fc8e57699fa790f1bdee7afc08ccbcdfda6433</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BenjitRmmksT8EUWb7Dgiz6HNJ1I1l7WpPvgv7dLF1-FgRlmzjkwHyHXQO-AKlVAJSBXAKzgsgA-lShpeUIWx0MJp38zsHNykdKWUsGpLhfkft3alIIPzo5h6FM2-GzVZ7fZ103ehA77NG1tm3U4xuCyPt8EzGz7iXW06ZKcedsmvDr2Jfl4enxfv-Sbt-fX9cMmd2WlxhycdKi9VlizSnDdgGC1Egot806hqKTW3laaeqgbxMp6R5VztWt8YyVnbElWc-4uDt97TKPpQnLYtrbHYZ8MyCkBGFA-SeUsdXFIKaI3uxg6G38MUHPAZQ4kzIGE4dIANzOuyVjOxjDszHbYx-nr9J_pF7ETa7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669913104</pqid></control><display><type>article</type><title>Classifications of (n + k)-dimensional metric n-Lie algebras</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bai, Ruipu ; Wu, Wanqing ; Chen, Zhiqi</creator><creatorcontrib>Bai, Ruipu ; Wu, Wanqing ; Chen, Zhiqi</creatorcontrib><description>We study the structure of isotropic ideals of the metric n-Lie algebra over the complex field for n 2. Based on the study of isotropic ideals of metric n-Lie algebras in this paper, we obtain the following. (i) Let be the Levi decomposition and without semi-simple ideals. If n &gt; 2, is perfect and is isotropic, then is the unique isomaximal ideal and , and the metric dimension of is m. If is indecomposable, then is isomorphic to as an -module in the regular representation. (ii) If with 2 k n + 1, then . If is unsolvable, then is reductive. If the center of is isotropic, then (iii) There are only three classes of (n + k)-dimensional metric n-Lie algebras for 2 k n + 1 and n &gt; 2, and the concrete multiplications for each class are provided.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/46/14/145202</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Algebra ; classification ; Classifications ; Concretes ; Decomposition ; isomaximal ideal ; isotropic ideal ; Lie algebra ; Mathematical analysis ; metric ; Multiplication ; Representations</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2013-04, Vol.46 (14), p.145202-11</ispartof><rights>2013 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-1c6ce9f98eb37549d153b858ea3fc8e57699fa790f1bdee7afc08ccbcdfda6433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/46/14/145202/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Bai, Ruipu</creatorcontrib><creatorcontrib>Wu, Wanqing</creatorcontrib><creatorcontrib>Chen, Zhiqi</creatorcontrib><title>Classifications of (n + k)-dimensional metric n-Lie algebras</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We study the structure of isotropic ideals of the metric n-Lie algebra over the complex field for n 2. Based on the study of isotropic ideals of metric n-Lie algebras in this paper, we obtain the following. (i) Let be the Levi decomposition and without semi-simple ideals. If n &gt; 2, is perfect and is isotropic, then is the unique isomaximal ideal and , and the metric dimension of is m. If is indecomposable, then is isomorphic to as an -module in the regular representation. (ii) If with 2 k n + 1, then . If is unsolvable, then is reductive. If the center of is isotropic, then (iii) There are only three classes of (n + k)-dimensional metric n-Lie algebras for 2 k n + 1 and n &gt; 2, and the concrete multiplications for each class are provided.</description><subject>Algebra</subject><subject>classification</subject><subject>Classifications</subject><subject>Concretes</subject><subject>Decomposition</subject><subject>isomaximal ideal</subject><subject>isotropic ideal</subject><subject>Lie algebra</subject><subject>Mathematical analysis</subject><subject>metric</subject><subject>Multiplication</subject><subject>Representations</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-BenjitRmmksT8EUWb7Dgiz6HNJ1I1l7WpPvgv7dLF1-FgRlmzjkwHyHXQO-AKlVAJSBXAKzgsgA-lShpeUIWx0MJp38zsHNykdKWUsGpLhfkft3alIIPzo5h6FM2-GzVZ7fZ103ehA77NG1tm3U4xuCyPt8EzGz7iXW06ZKcedsmvDr2Jfl4enxfv-Sbt-fX9cMmd2WlxhycdKi9VlizSnDdgGC1Egot806hqKTW3laaeqgbxMp6R5VztWt8YyVnbElWc-4uDt97TKPpQnLYtrbHYZ8MyCkBGFA-SeUsdXFIKaI3uxg6G38MUHPAZQ4kzIGE4dIANzOuyVjOxjDszHbYx-nr9J_pF7ETa7A</recordid><startdate>20130412</startdate><enddate>20130412</enddate><creator>Bai, Ruipu</creator><creator>Wu, Wanqing</creator><creator>Chen, Zhiqi</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130412</creationdate><title>Classifications of (n + k)-dimensional metric n-Lie algebras</title><author>Bai, Ruipu ; Wu, Wanqing ; Chen, Zhiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-1c6ce9f98eb37549d153b858ea3fc8e57699fa790f1bdee7afc08ccbcdfda6433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>classification</topic><topic>Classifications</topic><topic>Concretes</topic><topic>Decomposition</topic><topic>isomaximal ideal</topic><topic>isotropic ideal</topic><topic>Lie algebra</topic><topic>Mathematical analysis</topic><topic>metric</topic><topic>Multiplication</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Ruipu</creatorcontrib><creatorcontrib>Wu, Wanqing</creatorcontrib><creatorcontrib>Chen, Zhiqi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Ruipu</au><au>Wu, Wanqing</au><au>Chen, Zhiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifications of (n + k)-dimensional metric n-Lie algebras</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2013-04-12</date><risdate>2013</risdate><volume>46</volume><issue>14</issue><spage>145202</spage><epage>11</epage><pages>145202-11</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We study the structure of isotropic ideals of the metric n-Lie algebra over the complex field for n 2. Based on the study of isotropic ideals of metric n-Lie algebras in this paper, we obtain the following. (i) Let be the Levi decomposition and without semi-simple ideals. If n &gt; 2, is perfect and is isotropic, then is the unique isomaximal ideal and , and the metric dimension of is m. If is indecomposable, then is isomorphic to as an -module in the regular representation. (ii) If with 2 k n + 1, then . If is unsolvable, then is reductive. If the center of is isotropic, then (iii) There are only three classes of (n + k)-dimensional metric n-Lie algebras for 2 k n + 1 and n &gt; 2, and the concrete multiplications for each class are provided.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8113/46/14/145202</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2013-04, Vol.46 (14), p.145202-11
issn 1751-8113
1751-8121
language eng
recordid cdi_proquest_miscellaneous_1669913104
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algebra
classification
Classifications
Concretes
Decomposition
isomaximal ideal
isotropic ideal
Lie algebra
Mathematical analysis
metric
Multiplication
Representations
title Classifications of (n + k)-dimensional metric n-Lie algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifications%20of%20(n%20+%20k)-dimensional%20metric%20n-Lie%20algebras&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Bai,%20Ruipu&rft.date=2013-04-12&rft.volume=46&rft.issue=14&rft.spage=145202&rft.epage=11&rft.pages=145202-11&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/46/14/145202&rft_dat=%3Cproquest_cross%3E1669913104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669913104&rft_id=info:pmid/&rfr_iscdi=true