An integrable 3D lattice model with positive Boltzmann weights

In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2013-11, Vol.46 (46), p.465206-16
Hauptverfasser: Mangazeev, Vladimir V, Bazhanov, Vladimir V, Sergeev, Sergey M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 46
container_start_page 465206
container_title Journal of physics. A, Mathematical and theoretical
container_volume 46
creator Mangazeev, Vladimir V
Bazhanov, Vladimir V
Sergeev, Sergey M
description In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalization of the Yang-Baxter equation. The weights depend on a free parameter 0 < q < 1 and three continuous field variables. The layer-to-layer transfer matrices of the model form a two-parameter commutative family. This is the first example of a non-trivial solvable 3D lattice model with non-negative Boltzmann weights.
doi_str_mv 10.1088/1751-8113/46/46/465206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669912638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669912638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-49f394376bb8bc99c68754e0a75400cb6e60f7be901b22e705cb9b39da9f17773</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BcnRS92kaZPmIqzrX1jwoueQZKe7WdqmNqmLfnpbungVHjMD897A_BC6puSWkqJYUJHTpKCULTI-KU8JP0Gz4yKlp38zZefoIoQ9IXlGZDpDd8sGuybCttOmAswecKVjdBZw7TdQ4YOLO9z64KL7Anzvq_hT66bBB3DbXQyX6KzUVYCrY5-jj6fH99VLsn57fl0t14lljMYkkyWTGRPcmMJYKS0vRJ4B0UMlxBoOnJTCgCTUpCkIklsjDZMbLUsqhGBzdDPdbTv_2UOIqnbBQlXpBnwfFOVcSppyVgxWPllt50PooFRt52rdfStK1AhMjSzUyEJlfNIIbAimU9D5Vu193zXDR_-FfgGZn2vX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669912638</pqid></control><display><type>article</type><title>An integrable 3D lattice model with positive Boltzmann weights</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Mangazeev, Vladimir V ; Bazhanov, Vladimir V ; Sergeev, Sergey M</creator><creatorcontrib>Mangazeev, Vladimir V ; Bazhanov, Vladimir V ; Sergeev, Sergey M</creatorcontrib><description>In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalization of the Yang-Baxter equation. The weights depend on a free parameter 0 &lt; q &lt; 1 and three continuous field variables. The layer-to-layer transfer matrices of the model form a two-parameter commutative family. This is the first example of a non-trivial solvable 3D lattice model with non-negative Boltzmann weights.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/46/46/465206</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Construction ; Cubic lattice ; integrable systems ; Lattices ; Mathematical analysis ; Mathematical models ; q-oscillator algebra ; tetrahedron equation ; Tetrahedrons ; Three dimensional ; Three dimensional models ; Transfer matrices</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2013-11, Vol.46 (46), p.465206-16</ispartof><rights>2013 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-49f394376bb8bc99c68754e0a75400cb6e60f7be901b22e705cb9b39da9f17773</citedby><cites>FETCH-LOGICAL-c331t-49f394376bb8bc99c68754e0a75400cb6e60f7be901b22e705cb9b39da9f17773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/46/46/465206/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Mangazeev, Vladimir V</creatorcontrib><creatorcontrib>Bazhanov, Vladimir V</creatorcontrib><creatorcontrib>Sergeev, Sergey M</creatorcontrib><title>An integrable 3D lattice model with positive Boltzmann weights</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalization of the Yang-Baxter equation. The weights depend on a free parameter 0 &lt; q &lt; 1 and three continuous field variables. The layer-to-layer transfer matrices of the model form a two-parameter commutative family. This is the first example of a non-trivial solvable 3D lattice model with non-negative Boltzmann weights.</description><subject>Construction</subject><subject>Cubic lattice</subject><subject>integrable systems</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>q-oscillator algebra</subject><subject>tetrahedron equation</subject><subject>Tetrahedrons</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Transfer matrices</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BcnRS92kaZPmIqzrX1jwoueQZKe7WdqmNqmLfnpbungVHjMD897A_BC6puSWkqJYUJHTpKCULTI-KU8JP0Gz4yKlp38zZefoIoQ9IXlGZDpDd8sGuybCttOmAswecKVjdBZw7TdQ4YOLO9z64KL7Anzvq_hT66bBB3DbXQyX6KzUVYCrY5-jj6fH99VLsn57fl0t14lljMYkkyWTGRPcmMJYKS0vRJ4B0UMlxBoOnJTCgCTUpCkIklsjDZMbLUsqhGBzdDPdbTv_2UOIqnbBQlXpBnwfFOVcSppyVgxWPllt50PooFRt52rdfStK1AhMjSzUyEJlfNIIbAimU9D5Vu193zXDR_-FfgGZn2vX</recordid><startdate>20131122</startdate><enddate>20131122</enddate><creator>Mangazeev, Vladimir V</creator><creator>Bazhanov, Vladimir V</creator><creator>Sergeev, Sergey M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131122</creationdate><title>An integrable 3D lattice model with positive Boltzmann weights</title><author>Mangazeev, Vladimir V ; Bazhanov, Vladimir V ; Sergeev, Sergey M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-49f394376bb8bc99c68754e0a75400cb6e60f7be901b22e705cb9b39da9f17773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Construction</topic><topic>Cubic lattice</topic><topic>integrable systems</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>q-oscillator algebra</topic><topic>tetrahedron equation</topic><topic>Tetrahedrons</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangazeev, Vladimir V</creatorcontrib><creatorcontrib>Bazhanov, Vladimir V</creatorcontrib><creatorcontrib>Sergeev, Sergey M</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangazeev, Vladimir V</au><au>Bazhanov, Vladimir V</au><au>Sergeev, Sergey M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrable 3D lattice model with positive Boltzmann weights</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2013-11-22</date><risdate>2013</risdate><volume>46</volume><issue>46</issue><spage>465206</spage><epage>16</epage><pages>465206-16</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalization of the Yang-Baxter equation. The weights depend on a free parameter 0 &lt; q &lt; 1 and three continuous field variables. The layer-to-layer transfer matrices of the model form a two-parameter commutative family. This is the first example of a non-trivial solvable 3D lattice model with non-negative Boltzmann weights.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8113/46/46/465206</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2013-11, Vol.46 (46), p.465206-16
issn 1751-8113
1751-8121
language eng
recordid cdi_proquest_miscellaneous_1669912638
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Construction
Cubic lattice
integrable systems
Lattices
Mathematical analysis
Mathematical models
q-oscillator algebra
tetrahedron equation
Tetrahedrons
Three dimensional
Three dimensional models
Transfer matrices
title An integrable 3D lattice model with positive Boltzmann weights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrable%203D%20lattice%20model%20with%20positive%20Boltzmann%20weights&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Mangazeev,%20Vladimir%20V&rft.date=2013-11-22&rft.volume=46&rft.issue=46&rft.spage=465206&rft.epage=16&rft.pages=465206-16&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/46/46/465206&rft_dat=%3Cproquest_cross%3E1669912638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669912638&rft_id=info:pmid/&rfr_iscdi=true