The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures
We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 μm are produced on the surface of the nick...
Gespeichert in:
Veröffentlicht in: | Science and technology of advanced materials 2013-10, Vol.14 (5), p.055010-9 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 5 |
container_start_page | 055010 |
container_title | Science and technology of advanced materials |
container_volume | 14 |
creator | Li, Yinghong Zhou, Liucheng He, Weifeng He, Guangyu Wang, Xuede Nie, Xiangfan Wang, Bo Luo, Sihai Li, Yuqin |
description | We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation. |
doi_str_mv | 10.1088/1468-6996/14/5/055010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669912319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e759082c07154282854c34234f01b39b</doaj_id><sourcerecordid>2332065738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-e1f41cd341aa5dfd3e5666f34c7892bcbba4fb4971432256b37e4ac2160aed263</originalsourceid><addsrcrecordid>eNqFkktv1DAURiMEoqXwE0CW2LAJ9dvOBoEqHpUqsSlry3GuJ5k69mBnQPPv8TDTQlnQla_sc49fX9O8JPgtwVqfEy51K7tO1upcnGMhMMGPmlOilW6FIPxxrW-Zk-ZZKWuMsSSUP21OqNJKSaJOG7geAZUlQ1wtI8QprtAMbrRxKjNKHlkUJ3cDoe1tgQHZENIOWb9ARqHOZFTG5G7QJicHpezb7YLGaTWiBeYNZLtsM5TnzRNvQ4EXx_Gs-fbp4_XFl_bq6-fLiw9XrVOYLS0Qz4kbGCfWisEPDISU0jPulO5o7_rect_zThHOKBWyZwq4dZRIbGGgkp01lwfvkOzabPI027wzyU7m90TKK2PzMrkABpTosKYOKyI41VQL7hinjHtMetb11fXu4Nps-xkGB3HJNtyT3l-J02hW6YcRuMNM4yp4cxTk9H0LZTHzVByEYCOkbTFEc9YRJZl6GJX1FwllpKvo63_QddrmWF_VUMYolkIxXSlxoFxOpWTwd-cm2OzzY_bZMPts1MoIc8hP7Xv196Xvum4DUwFyAKa0-bPzQ9L3x57oU57tz5TDYBa7Cyn7bKObimH_V_wCk3bjdA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332065738</pqid></control><display><type>article</type><title>The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures</title><source>IOP Publishing Free Content</source><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Yinghong ; Zhou, Liucheng ; He, Weifeng ; He, Guangyu ; Wang, Xuede ; Nie, Xiangfan ; Wang, Bo ; Luo, Sihai ; Li, Yuqin</creator><creatorcontrib>Li, Yinghong ; Zhou, Liucheng ; He, Weifeng ; He, Guangyu ; Wang, Xuede ; Nie, Xiangfan ; Wang, Bo ; Luo, Sihai ; Li, Yuqin</creatorcontrib><description>We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.</description><identifier>ISSN: 1468-6996</identifier><identifier>EISSN: 1878-5514</identifier><identifier>DOI: 10.1088/1468-6996/14/5/055010</identifier><identifier>PMID: 27877617</identifier><identifier>CODEN: STAMCV</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Cold treatment ; Compressive properties ; Crystal defects ; Fatigue strength ; Grain boundaries ; Heat resistant alloys ; Heat treating ; Heat treatment ; High temperature ; Laser shock processing ; Lasers ; Metal fatigue ; Microhardness ; Nanocrystals ; Nickel alloys ; Nickel base alloys ; nickel-based alloy ; residual compressive stress ; Residual stress ; Shock waves ; Strengthening ; strengthening mechanism ; Stress relaxation ; Stresses ; surface nanocrystalline ; Surface stability ; Thermal relaxation ; Thermal stability</subject><ispartof>Science and technology of advanced materials, 2013-10, Vol.14 (5), p.055010-9</ispartof><rights>2013 National Institute for Materials Science 2013</rights><rights>2013 National Institute for Materials Science</rights><rights>2013 National Institute for Materials Science. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License http://creativecommons.org/licenses/by-nc-sa/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-e1f41cd341aa5dfd3e5666f34c7892bcbba4fb4971432256b37e4ac2160aed263</citedby><cites>FETCH-LOGICAL-c703t-e1f41cd341aa5dfd3e5666f34c7892bcbba4fb4971432256b37e4ac2160aed263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1468-6996/14/5/055010/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090380/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,27501,27923,27924,38867,38889,53790,53792,53839,53866,59142,59143</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27877617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yinghong</creatorcontrib><creatorcontrib>Zhou, Liucheng</creatorcontrib><creatorcontrib>He, Weifeng</creatorcontrib><creatorcontrib>He, Guangyu</creatorcontrib><creatorcontrib>Wang, Xuede</creatorcontrib><creatorcontrib>Nie, Xiangfan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Luo, Sihai</creatorcontrib><creatorcontrib>Li, Yuqin</creatorcontrib><title>The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures</title><title>Science and technology of advanced materials</title><addtitle>STAM</addtitle><addtitle>Sci. Technol. Adv. Mater</addtitle><description>We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.</description><subject>Cold treatment</subject><subject>Compressive properties</subject><subject>Crystal defects</subject><subject>Fatigue strength</subject><subject>Grain boundaries</subject><subject>Heat resistant alloys</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Metal fatigue</subject><subject>Microhardness</subject><subject>Nanocrystals</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>nickel-based alloy</subject><subject>residual compressive stress</subject><subject>Residual stress</subject><subject>Shock waves</subject><subject>Strengthening</subject><subject>strengthening mechanism</subject><subject>Stress relaxation</subject><subject>Stresses</subject><subject>surface nanocrystalline</subject><subject>Surface stability</subject><subject>Thermal relaxation</subject><subject>Thermal stability</subject><issn>1468-6996</issn><issn>1878-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>O3W</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktv1DAURiMEoqXwE0CW2LAJ9dvOBoEqHpUqsSlry3GuJ5k69mBnQPPv8TDTQlnQla_sc49fX9O8JPgtwVqfEy51K7tO1upcnGMhMMGPmlOilW6FIPxxrW-Zk-ZZKWuMsSSUP21OqNJKSaJOG7geAZUlQ1wtI8QprtAMbrRxKjNKHlkUJ3cDoe1tgQHZENIOWb9ARqHOZFTG5G7QJicHpezb7YLGaTWiBeYNZLtsM5TnzRNvQ4EXx_Gs-fbp4_XFl_bq6-fLiw9XrVOYLS0Qz4kbGCfWisEPDISU0jPulO5o7_rect_zThHOKBWyZwq4dZRIbGGgkp01lwfvkOzabPI027wzyU7m90TKK2PzMrkABpTosKYOKyI41VQL7hinjHtMetb11fXu4Nps-xkGB3HJNtyT3l-J02hW6YcRuMNM4yp4cxTk9H0LZTHzVByEYCOkbTFEc9YRJZl6GJX1FwllpKvo63_QddrmWF_VUMYolkIxXSlxoFxOpWTwd-cm2OzzY_bZMPts1MoIc8hP7Xv196Xvum4DUwFyAKa0-bPzQ9L3x57oU57tz5TDYBa7Cyn7bKObimH_V_wCk3bjdA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Li, Yinghong</creator><creator>Zhou, Liucheng</creator><creator>He, Weifeng</creator><creator>He, Guangyu</creator><creator>Wang, Xuede</creator><creator>Nie, Xiangfan</creator><creator>Wang, Bo</creator><creator>Luo, Sihai</creator><creator>Li, Yuqin</creator><general>Taylor & Francis</general><general>IOP Publishing</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JG9</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7SP</scope><scope>7SR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131001</creationdate><title>The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures</title><author>Li, Yinghong ; Zhou, Liucheng ; He, Weifeng ; He, Guangyu ; Wang, Xuede ; Nie, Xiangfan ; Wang, Bo ; Luo, Sihai ; Li, Yuqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-e1f41cd341aa5dfd3e5666f34c7892bcbba4fb4971432256b37e4ac2160aed263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cold treatment</topic><topic>Compressive properties</topic><topic>Crystal defects</topic><topic>Fatigue strength</topic><topic>Grain boundaries</topic><topic>Heat resistant alloys</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Metal fatigue</topic><topic>Microhardness</topic><topic>Nanocrystals</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>nickel-based alloy</topic><topic>residual compressive stress</topic><topic>Residual stress</topic><topic>Shock waves</topic><topic>Strengthening</topic><topic>strengthening mechanism</topic><topic>Stress relaxation</topic><topic>Stresses</topic><topic>surface nanocrystalline</topic><topic>Surface stability</topic><topic>Thermal relaxation</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yinghong</creatorcontrib><creatorcontrib>Zhou, Liucheng</creatorcontrib><creatorcontrib>He, Weifeng</creatorcontrib><creatorcontrib>He, Guangyu</creatorcontrib><creatorcontrib>Wang, Xuede</creatorcontrib><creatorcontrib>Nie, Xiangfan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Luo, Sihai</creatorcontrib><creatorcontrib>Li, Yuqin</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and technology of advanced materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yinghong</au><au>Zhou, Liucheng</au><au>He, Weifeng</au><au>He, Guangyu</au><au>Wang, Xuede</au><au>Nie, Xiangfan</au><au>Wang, Bo</au><au>Luo, Sihai</au><au>Li, Yuqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures</atitle><jtitle>Science and technology of advanced materials</jtitle><stitle>STAM</stitle><addtitle>Sci. Technol. Adv. Mater</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>14</volume><issue>5</issue><spage>055010</spage><epage>9</epage><pages>055010-9</pages><issn>1468-6996</issn><eissn>1878-5514</eissn><coden>STAMCV</coden><abstract>We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>27877617</pmid><doi>10.1088/1468-6996/14/5/055010</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-6996 |
ispartof | Science and technology of advanced materials, 2013-10, Vol.14 (5), p.055010-9 |
issn | 1468-6996 1878-5514 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669912319 |
source | IOP Publishing Free Content; Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Cold treatment Compressive properties Crystal defects Fatigue strength Grain boundaries Heat resistant alloys Heat treating Heat treatment High temperature Laser shock processing Lasers Metal fatigue Microhardness Nanocrystals Nickel alloys Nickel base alloys nickel-based alloy residual compressive stress Residual stress Shock waves Strengthening strengthening mechanism Stress relaxation Stresses surface nanocrystalline Surface stability Thermal relaxation Thermal stability |
title | The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20strengthening%20mechanism%20of%20a%20nickel-based%20alloy%20after%20laser%20shock%20processing%20at%20high%20temperatures&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials&rft.au=Li,%20Yinghong&rft.date=2013-10-01&rft.volume=14&rft.issue=5&rft.spage=055010&rft.epage=9&rft.pages=055010-9&rft.issn=1468-6996&rft.eissn=1878-5514&rft.coden=STAMCV&rft_id=info:doi/10.1088/1468-6996/14/5/055010&rft_dat=%3Cproquest_pubme%3E2332065738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332065738&rft_id=info:pmid/27877617&rft_doaj_id=oai_doaj_org_article_e759082c07154282854c34234f01b39b&rfr_iscdi=true |