A first principles method to simulate electron mobilities in 2D materials
We examine the predictive capabilities of first-principles theoretical methods to calculate the phonon- and impurity-limited electron mobilities for a number of technologically relevant two-dimensional materials in comparison to experiment. The studied systems include perfect graphene, graphane, ger...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2014-10, Vol.16 (10), p.105009-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 10 |
container_start_page | 105009 |
container_title | New journal of physics |
container_volume | 16 |
creator | Restrepo, Oscar D Krymowski, Kevin E Goldberger, Joshua Windl, Wolfgang |
description | We examine the predictive capabilities of first-principles theoretical methods to calculate the phonon- and impurity-limited electron mobilities for a number of technologically relevant two-dimensional materials in comparison to experiment. The studied systems include perfect graphene, graphane, germanane and MoS2, as well as graphene with vacancies, and hydrogen, gold, and platinum adsorbates. We find good agreement with experiments for the mobilities of graphene ( = 2 × 105 cm2 V−1s−1) and graphane ( = 166 cm2 V−1s−1) at room temperature. For monolayer MoS2 we obtain = 225 cm2 V−1s−1. This value is higher than what is observed experimentally (0.5-200 cm2 V−1s−1) but is on the same order of magnitude as other recent theoretical results. For bulk MoS2 we obtain = 48 cm2 V−1s−1. We obtain a very high mobility of 18 200 cm2 V−1s−1 for single-layer germanane. The calculated reduction in mobility from the different impurities compares well to measurements where experimental data are available, demonstrating that the proposed method has good predictive capabilities and can be very useful for validation and materials design. |
doi_str_mv | 10.1088/1367-2630/16/10/105009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669911041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5e628ef30fae48eba0c3db35991fb5a8</doaj_id><sourcerecordid>1669911041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-b9ad796faef097781fe3a43749926d9328644c98efd7f473b60caa2438682ccb3</originalsourceid><addsrcrecordid>eNqFkUtPxCAUhRujiePoXzAkbtyMw6PlsTQ-xxh1oWtCKSiTtlRgFv57GWvGR0zccMm93zlccoriEMETBDmfI0LZDFMC54jOUT5hBaHYKiabwfa3-26xF-MSQoQ4xpNicQqsCzGBIbheu6E1EXQmvfgGJA-i61atSgaY1ugUfA86X7vWJZcx1wN8Dro8Dk61cb_YsbmYg886LZ4uLx7Prme391eLs9Pbma4gTbNaqIYJapWxUDDGkTVElYSVQmDaCII5LUstuLENsyUjNYVaKVwSTjnWuibTYjH6Nl4tZV67U-FNeuXkR8OHZ6lCcro1sjIUZyMC82slN7WCmjQ1qYRAtq4Uz17Ho9cQ_OvKxCQ7F7VpW9Ubv4oSUZpZBEuU0aNf6NKvQp9_KjFBWJCKcZYpOlI6-BiDsZsFEZTrtOQ6CLkOIpuPzXVaWYhHofPDl_O_ouM_RHc3Dz8wOTSWvAO4Y6IZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312935787</pqid></control><display><type>article</type><title>A first principles method to simulate electron mobilities in 2D materials</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Restrepo, Oscar D ; Krymowski, Kevin E ; Goldberger, Joshua ; Windl, Wolfgang</creator><creatorcontrib>Restrepo, Oscar D ; Krymowski, Kevin E ; Goldberger, Joshua ; Windl, Wolfgang</creatorcontrib><description>We examine the predictive capabilities of first-principles theoretical methods to calculate the phonon- and impurity-limited electron mobilities for a number of technologically relevant two-dimensional materials in comparison to experiment. The studied systems include perfect graphene, graphane, germanane and MoS2, as well as graphene with vacancies, and hydrogen, gold, and platinum adsorbates. We find good agreement with experiments for the mobilities of graphene ( = 2 × 105 cm2 V−1s−1) and graphane ( = 166 cm2 V−1s−1) at room temperature. For monolayer MoS2 we obtain = 225 cm2 V−1s−1. This value is higher than what is observed experimentally (0.5-200 cm2 V−1s−1) but is on the same order of magnitude as other recent theoretical results. For bulk MoS2 we obtain = 48 cm2 V−1s−1. We obtain a very high mobility of 18 200 cm2 V−1s−1 for single-layer germanane. The calculated reduction in mobility from the different impurities compares well to measurements where experimental data are available, demonstrating that the proposed method has good predictive capabilities and can be very useful for validation and materials design.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/16/10/105009</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>2D materials ; Adsorbates ; computational modeling ; density functional theory ; Design engineering ; Electron mobility ; First principles ; Graphene ; Impurities ; Mathematical analysis ; Molybdenum disulfide ; nanoscience ; Physics ; Platinum ; Room temperature ; Simulation ; Two dimensional ; Two dimensional materials ; Vacancies</subject><ispartof>New journal of physics, 2014-10, Vol.16 (10), p.105009-12</ispartof><rights>2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-b9ad796faef097781fe3a43749926d9328644c98efd7f473b60caa2438682ccb3</citedby><cites>FETCH-LOGICAL-c506t-b9ad796faef097781fe3a43749926d9328644c98efd7f473b60caa2438682ccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/16/10/105009/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Restrepo, Oscar D</creatorcontrib><creatorcontrib>Krymowski, Kevin E</creatorcontrib><creatorcontrib>Goldberger, Joshua</creatorcontrib><creatorcontrib>Windl, Wolfgang</creatorcontrib><title>A first principles method to simulate electron mobilities in 2D materials</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We examine the predictive capabilities of first-principles theoretical methods to calculate the phonon- and impurity-limited electron mobilities for a number of technologically relevant two-dimensional materials in comparison to experiment. The studied systems include perfect graphene, graphane, germanane and MoS2, as well as graphene with vacancies, and hydrogen, gold, and platinum adsorbates. We find good agreement with experiments for the mobilities of graphene ( = 2 × 105 cm2 V−1s−1) and graphane ( = 166 cm2 V−1s−1) at room temperature. For monolayer MoS2 we obtain = 225 cm2 V−1s−1. This value is higher than what is observed experimentally (0.5-200 cm2 V−1s−1) but is on the same order of magnitude as other recent theoretical results. For bulk MoS2 we obtain = 48 cm2 V−1s−1. We obtain a very high mobility of 18 200 cm2 V−1s−1 for single-layer germanane. The calculated reduction in mobility from the different impurities compares well to measurements where experimental data are available, demonstrating that the proposed method has good predictive capabilities and can be very useful for validation and materials design.</description><subject>2D materials</subject><subject>Adsorbates</subject><subject>computational modeling</subject><subject>density functional theory</subject><subject>Design engineering</subject><subject>Electron mobility</subject><subject>First principles</subject><subject>Graphene</subject><subject>Impurities</subject><subject>Mathematical analysis</subject><subject>Molybdenum disulfide</subject><subject>nanoscience</subject><subject>Physics</subject><subject>Platinum</subject><subject>Room temperature</subject><subject>Simulation</subject><subject>Two dimensional</subject><subject>Two dimensional materials</subject><subject>Vacancies</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqFkUtPxCAUhRujiePoXzAkbtyMw6PlsTQ-xxh1oWtCKSiTtlRgFv57GWvGR0zccMm93zlccoriEMETBDmfI0LZDFMC54jOUT5hBaHYKiabwfa3-26xF-MSQoQ4xpNicQqsCzGBIbheu6E1EXQmvfgGJA-i61atSgaY1ugUfA86X7vWJZcx1wN8Dro8Dk61cb_YsbmYg886LZ4uLx7Prme391eLs9Pbma4gTbNaqIYJapWxUDDGkTVElYSVQmDaCII5LUstuLENsyUjNYVaKVwSTjnWuibTYjH6Nl4tZV67U-FNeuXkR8OHZ6lCcro1sjIUZyMC82slN7WCmjQ1qYRAtq4Uz17Ho9cQ_OvKxCQ7F7VpW9Ubv4oSUZpZBEuU0aNf6NKvQp9_KjFBWJCKcZYpOlI6-BiDsZsFEZTrtOQ6CLkOIpuPzXVaWYhHofPDl_O_ouM_RHc3Dz8wOTSWvAO4Y6IZ</recordid><startdate>20141014</startdate><enddate>20141014</enddate><creator>Restrepo, Oscar D</creator><creator>Krymowski, Kevin E</creator><creator>Goldberger, Joshua</creator><creator>Windl, Wolfgang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>DOA</scope></search><sort><creationdate>20141014</creationdate><title>A first principles method to simulate electron mobilities in 2D materials</title><author>Restrepo, Oscar D ; Krymowski, Kevin E ; Goldberger, Joshua ; Windl, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-b9ad796faef097781fe3a43749926d9328644c98efd7f473b60caa2438682ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>2D materials</topic><topic>Adsorbates</topic><topic>computational modeling</topic><topic>density functional theory</topic><topic>Design engineering</topic><topic>Electron mobility</topic><topic>First principles</topic><topic>Graphene</topic><topic>Impurities</topic><topic>Mathematical analysis</topic><topic>Molybdenum disulfide</topic><topic>nanoscience</topic><topic>Physics</topic><topic>Platinum</topic><topic>Room temperature</topic><topic>Simulation</topic><topic>Two dimensional</topic><topic>Two dimensional materials</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Restrepo, Oscar D</creatorcontrib><creatorcontrib>Krymowski, Kevin E</creatorcontrib><creatorcontrib>Goldberger, Joshua</creatorcontrib><creatorcontrib>Windl, Wolfgang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Restrepo, Oscar D</au><au>Krymowski, Kevin E</au><au>Goldberger, Joshua</au><au>Windl, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A first principles method to simulate electron mobilities in 2D materials</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2014-10-14</date><risdate>2014</risdate><volume>16</volume><issue>10</issue><spage>105009</spage><epage>12</epage><pages>105009-12</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We examine the predictive capabilities of first-principles theoretical methods to calculate the phonon- and impurity-limited electron mobilities for a number of technologically relevant two-dimensional materials in comparison to experiment. The studied systems include perfect graphene, graphane, germanane and MoS2, as well as graphene with vacancies, and hydrogen, gold, and platinum adsorbates. We find good agreement with experiments for the mobilities of graphene ( = 2 × 105 cm2 V−1s−1) and graphane ( = 166 cm2 V−1s−1) at room temperature. For monolayer MoS2 we obtain = 225 cm2 V−1s−1. This value is higher than what is observed experimentally (0.5-200 cm2 V−1s−1) but is on the same order of magnitude as other recent theoretical results. For bulk MoS2 we obtain = 48 cm2 V−1s−1. We obtain a very high mobility of 18 200 cm2 V−1s−1 for single-layer germanane. The calculated reduction in mobility from the different impurities compares well to measurements where experimental data are available, demonstrating that the proposed method has good predictive capabilities and can be very useful for validation and materials design.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/16/10/105009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2014-10, Vol.16 (10), p.105009-12 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669911041 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 2D materials Adsorbates computational modeling density functional theory Design engineering Electron mobility First principles Graphene Impurities Mathematical analysis Molybdenum disulfide nanoscience Physics Platinum Room temperature Simulation Two dimensional Two dimensional materials Vacancies |
title | A first principles method to simulate electron mobilities in 2D materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20first%20principles%20method%20to%20simulate%20electron%20mobilities%20in%202D%20materials&rft.jtitle=New%20journal%20of%20physics&rft.au=Restrepo,%20Oscar%20D&rft.date=2014-10-14&rft.volume=16&rft.issue=10&rft.spage=105009&rft.epage=12&rft.pages=105009-12&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/16/10/105009&rft_dat=%3Cproquest_iop_j%3E1669911041%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312935787&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5e628ef30fae48eba0c3db35991fb5a8&rfr_iscdi=true |