A novel nth order difference equation that may be integrable

We derive an nth order difference equation as a dual of a very simple periodic equation, and construct ⌊(n + 1) 2⌋ explicit integrals and integrating factors of this equation in terms of multi-sums of products. We also present a generating function for the degrees of its iterates, exhibiting polynom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2012-04, Vol.45 (13), p.1-10
Hauptverfasser: Demskoi, D K, Tran, D T, van der Kamp, P H, Quispel, G R W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive an nth order difference equation as a dual of a very simple periodic equation, and construct ⌊(n + 1) 2⌋ explicit integrals and integrating factors of this equation in terms of multi-sums of products. We also present a generating function for the degrees of its iterates, exhibiting polynomial growth. In conclusion we demonstrate how the equation in question arises as a reduction of a system of lattice equations related to an integrable equation of Levi and Yamilov. These three facts combine to suggest the integrability of the nth order difference equation.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8113/45/13/135202