A microfluidic platform for the investigation of elongation growth in pollen tubes

Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2012-11, Vol.22 (11), p.115009-11
Hauptverfasser: Agudelo, C G, Sanati, A, Ghanbari, M, Packirisamy, M, Geitmann, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 11
container_start_page 115009
container_title Journal of micromechanics and microengineering
container_volume 22
creator Agudelo, C G
Sanati, A
Ghanbari, M
Packirisamy, M
Geitmann, A
description Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays.
doi_str_mv 10.1088/0960-1317/22/11/115009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669910687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669910687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QXIRvKzNJNvs5liKX1AQRM8hmyZtSrpZk13Ff2_Kll6FYYaBZz7eF6FbIA9A6npGBCcFMKhmlM4AcswJEWdoAoxDwUsmztHkBF2iq5R2hADUUE_Q-wLvnY7B-sGtncadV70NcY9zwv3WYNd-m9S7jepdaHGw2PjQHrtNDD_9NiO4C96bFvdDY9I1urDKJ3NzrFP0-fT4sXwpVm_Pr8vFqtAlrfqiZqY0VkNp15YJbtfK0hI4azQIC9QqqICpks-tqZQ2ugGrdUMbBlQoPhdsiu7HvV0MX0N-Uu5d0sZ71ZowJAmcCwGE11VG-YhmpSlFY2UX3V7FXwlEHkyUB3_kwR9JqQSQo4l58O54QyWtvI2q1S6dpinntGRknjk6ci50cheG2Gbl_y3_A7tkgeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669910687</pqid></control><display><type>article</type><title>A microfluidic platform for the investigation of elongation growth in pollen tubes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Agudelo, C G ; Sanati, A ; Ghanbari, M ; Packirisamy, M ; Geitmann, A</creator><creatorcontrib>Agudelo, C G ; Sanati, A ; Ghanbari, M ; Packirisamy, M ; Geitmann, A</creatorcontrib><description>Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/0960-1317/22/11/115009</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Assaying ; Biological and medical sciences ; biomems ; Cell cultures. Hybridization. Fusion ; Elongation ; Fundamental and applied biological sciences. Psychology ; In vitro testing ; lab-on-a-chip ; Microfluidics ; Molecular and cellular biology ; Networks ; Plant cells and fungal cells ; Platforms ; Pollen ; pollen tube ; Tubes</subject><ispartof>Journal of micromechanics and microengineering, 2012-11, Vol.22 (11), p.115009-11</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</citedby><cites>FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0960-1317/22/11/115009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26624305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agudelo, C G</creatorcontrib><creatorcontrib>Sanati, A</creatorcontrib><creatorcontrib>Ghanbari, M</creatorcontrib><creatorcontrib>Packirisamy, M</creatorcontrib><creatorcontrib>Geitmann, A</creatorcontrib><title>A microfluidic platform for the investigation of elongation growth in pollen tubes</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays.</description><subject>Assaying</subject><subject>Biological and medical sciences</subject><subject>biomems</subject><subject>Cell cultures. Hybridization. Fusion</subject><subject>Elongation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In vitro testing</subject><subject>lab-on-a-chip</subject><subject>Microfluidics</subject><subject>Molecular and cellular biology</subject><subject>Networks</subject><subject>Plant cells and fungal cells</subject><subject>Platforms</subject><subject>Pollen</subject><subject>pollen tube</subject><subject>Tubes</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QXIRvKzNJNvs5liKX1AQRM8hmyZtSrpZk13Ff2_Kll6FYYaBZz7eF6FbIA9A6npGBCcFMKhmlM4AcswJEWdoAoxDwUsmztHkBF2iq5R2hADUUE_Q-wLvnY7B-sGtncadV70NcY9zwv3WYNd-m9S7jepdaHGw2PjQHrtNDD_9NiO4C96bFvdDY9I1urDKJ3NzrFP0-fT4sXwpVm_Pr8vFqtAlrfqiZqY0VkNp15YJbtfK0hI4azQIC9QqqICpks-tqZQ2ugGrdUMbBlQoPhdsiu7HvV0MX0N-Uu5d0sZ71ZowJAmcCwGE11VG-YhmpSlFY2UX3V7FXwlEHkyUB3_kwR9JqQSQo4l58O54QyWtvI2q1S6dpinntGRknjk6ci50cheG2Gbl_y3_A7tkgeE</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Agudelo, C G</creator><creator>Sanati, A</creator><creator>Ghanbari, M</creator><creator>Packirisamy, M</creator><creator>Geitmann, A</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>A microfluidic platform for the investigation of elongation growth in pollen tubes</title><author>Agudelo, C G ; Sanati, A ; Ghanbari, M ; Packirisamy, M ; Geitmann, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Assaying</topic><topic>Biological and medical sciences</topic><topic>biomems</topic><topic>Cell cultures. Hybridization. Fusion</topic><topic>Elongation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In vitro testing</topic><topic>lab-on-a-chip</topic><topic>Microfluidics</topic><topic>Molecular and cellular biology</topic><topic>Networks</topic><topic>Plant cells and fungal cells</topic><topic>Platforms</topic><topic>Pollen</topic><topic>pollen tube</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agudelo, C G</creatorcontrib><creatorcontrib>Sanati, A</creatorcontrib><creatorcontrib>Ghanbari, M</creatorcontrib><creatorcontrib>Packirisamy, M</creatorcontrib><creatorcontrib>Geitmann, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agudelo, C G</au><au>Sanati, A</au><au>Ghanbari, M</au><au>Packirisamy, M</au><au>Geitmann, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfluidic platform for the investigation of elongation growth in pollen tubes</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>22</volume><issue>11</issue><spage>115009</spage><epage>11</epage><pages>115009-11</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0960-1317/22/11/115009</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1317
ispartof Journal of micromechanics and microengineering, 2012-11, Vol.22 (11), p.115009-11
issn 0960-1317
1361-6439
language eng
recordid cdi_proquest_miscellaneous_1669910687
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Assaying
Biological and medical sciences
biomems
Cell cultures. Hybridization. Fusion
Elongation
Fundamental and applied biological sciences. Psychology
In vitro testing
lab-on-a-chip
Microfluidics
Molecular and cellular biology
Networks
Plant cells and fungal cells
Platforms
Pollen
pollen tube
Tubes
title A microfluidic platform for the investigation of elongation growth in pollen tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfluidic%20platform%20for%20the%20investigation%20of%20elongation%20growth%20in%20pollen%20tubes&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Agudelo,%20C%20G&rft.date=2012-11-01&rft.volume=22&rft.issue=11&rft.spage=115009&rft.epage=11&rft.pages=115009-11&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/0960-1317/22/11/115009&rft_dat=%3Cproquest_cross%3E1669910687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669910687&rft_id=info:pmid/&rfr_iscdi=true