A microfluidic platform for the investigation of elongation growth in pollen tubes
Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles th...
Gespeichert in:
Veröffentlicht in: | Journal of micromechanics and microengineering 2012-11, Vol.22 (11), p.115009-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 11 |
container_start_page | 115009 |
container_title | Journal of micromechanics and microengineering |
container_volume | 22 |
creator | Agudelo, C G Sanati, A Ghanbari, M Packirisamy, M Geitmann, A |
description | Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays. |
doi_str_mv | 10.1088/0960-1317/22/11/115009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669910687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669910687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QXIRvKzNJNvs5liKX1AQRM8hmyZtSrpZk13Ff2_Kll6FYYaBZz7eF6FbIA9A6npGBCcFMKhmlM4AcswJEWdoAoxDwUsmztHkBF2iq5R2hADUUE_Q-wLvnY7B-sGtncadV70NcY9zwv3WYNd-m9S7jepdaHGw2PjQHrtNDD_9NiO4C96bFvdDY9I1urDKJ3NzrFP0-fT4sXwpVm_Pr8vFqtAlrfqiZqY0VkNp15YJbtfK0hI4azQIC9QqqICpks-tqZQ2ugGrdUMbBlQoPhdsiu7HvV0MX0N-Uu5d0sZ71ZowJAmcCwGE11VG-YhmpSlFY2UX3V7FXwlEHkyUB3_kwR9JqQSQo4l58O54QyWtvI2q1S6dpinntGRknjk6ci50cheG2Gbl_y3_A7tkgeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669910687</pqid></control><display><type>article</type><title>A microfluidic platform for the investigation of elongation growth in pollen tubes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Agudelo, C G ; Sanati, A ; Ghanbari, M ; Packirisamy, M ; Geitmann, A</creator><creatorcontrib>Agudelo, C G ; Sanati, A ; Ghanbari, M ; Packirisamy, M ; Geitmann, A</creatorcontrib><description>Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/0960-1317/22/11/115009</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Assaying ; Biological and medical sciences ; biomems ; Cell cultures. Hybridization. Fusion ; Elongation ; Fundamental and applied biological sciences. Psychology ; In vitro testing ; lab-on-a-chip ; Microfluidics ; Molecular and cellular biology ; Networks ; Plant cells and fungal cells ; Platforms ; Pollen ; pollen tube ; Tubes</subject><ispartof>Journal of micromechanics and microengineering, 2012-11, Vol.22 (11), p.115009-11</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</citedby><cites>FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0960-1317/22/11/115009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26624305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agudelo, C G</creatorcontrib><creatorcontrib>Sanati, A</creatorcontrib><creatorcontrib>Ghanbari, M</creatorcontrib><creatorcontrib>Packirisamy, M</creatorcontrib><creatorcontrib>Geitmann, A</creatorcontrib><title>A microfluidic platform for the investigation of elongation growth in pollen tubes</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays.</description><subject>Assaying</subject><subject>Biological and medical sciences</subject><subject>biomems</subject><subject>Cell cultures. Hybridization. Fusion</subject><subject>Elongation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In vitro testing</subject><subject>lab-on-a-chip</subject><subject>Microfluidics</subject><subject>Molecular and cellular biology</subject><subject>Networks</subject><subject>Plant cells and fungal cells</subject><subject>Platforms</subject><subject>Pollen</subject><subject>pollen tube</subject><subject>Tubes</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QXIRvKzNJNvs5liKX1AQRM8hmyZtSrpZk13Ff2_Kll6FYYaBZz7eF6FbIA9A6npGBCcFMKhmlM4AcswJEWdoAoxDwUsmztHkBF2iq5R2hADUUE_Q-wLvnY7B-sGtncadV70NcY9zwv3WYNd-m9S7jepdaHGw2PjQHrtNDD_9NiO4C96bFvdDY9I1urDKJ3NzrFP0-fT4sXwpVm_Pr8vFqtAlrfqiZqY0VkNp15YJbtfK0hI4azQIC9QqqICpks-tqZQ2ugGrdUMbBlQoPhdsiu7HvV0MX0N-Uu5d0sZ71ZowJAmcCwGE11VG-YhmpSlFY2UX3V7FXwlEHkyUB3_kwR9JqQSQo4l58O54QyWtvI2q1S6dpinntGRknjk6ci50cheG2Gbl_y3_A7tkgeE</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Agudelo, C G</creator><creator>Sanati, A</creator><creator>Ghanbari, M</creator><creator>Packirisamy, M</creator><creator>Geitmann, A</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>A microfluidic platform for the investigation of elongation growth in pollen tubes</title><author>Agudelo, C G ; Sanati, A ; Ghanbari, M ; Packirisamy, M ; Geitmann, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-83e4efc14fdf396fdaf24163bc19f12fa1713a465fe7acecb1fccb2b3129a6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Assaying</topic><topic>Biological and medical sciences</topic><topic>biomems</topic><topic>Cell cultures. Hybridization. Fusion</topic><topic>Elongation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In vitro testing</topic><topic>lab-on-a-chip</topic><topic>Microfluidics</topic><topic>Molecular and cellular biology</topic><topic>Networks</topic><topic>Plant cells and fungal cells</topic><topic>Platforms</topic><topic>Pollen</topic><topic>pollen tube</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agudelo, C G</creatorcontrib><creatorcontrib>Sanati, A</creatorcontrib><creatorcontrib>Ghanbari, M</creatorcontrib><creatorcontrib>Packirisamy, M</creatorcontrib><creatorcontrib>Geitmann, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agudelo, C G</au><au>Sanati, A</au><au>Ghanbari, M</au><au>Packirisamy, M</au><au>Geitmann, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microfluidic platform for the investigation of elongation growth in pollen tubes</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>22</volume><issue>11</issue><spage>115009</spage><epage>11</epage><pages>115009-11</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0960-1317/22/11/115009</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1317 |
ispartof | Journal of micromechanics and microengineering, 2012-11, Vol.22 (11), p.115009-11 |
issn | 0960-1317 1361-6439 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669910687 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Assaying Biological and medical sciences biomems Cell cultures. Hybridization. Fusion Elongation Fundamental and applied biological sciences. Psychology In vitro testing lab-on-a-chip Microfluidics Molecular and cellular biology Networks Plant cells and fungal cells Platforms Pollen pollen tube Tubes |
title | A microfluidic platform for the investigation of elongation growth in pollen tubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microfluidic%20platform%20for%20the%20investigation%20of%20elongation%20growth%20in%20pollen%20tubes&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Agudelo,%20C%20G&rft.date=2012-11-01&rft.volume=22&rft.issue=11&rft.spage=115009&rft.epage=11&rft.pages=115009-11&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/0960-1317/22/11/115009&rft_dat=%3Cproquest_cross%3E1669910687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669910687&rft_id=info:pmid/&rfr_iscdi=true |