A Comparison between Fuzzy Inference Systems for Prediction (with Application to Prices of Fund in Egypt)

This paper outlines the basic differences between the Fuzzy logic techniques, including Mamdani , Sugeno fuzzy inference system models and Adaptive Neuro-Fuzzy Inference System (ANFIS) . The main motivation behind this research is to assess which approach provides the best performance for predicting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2015-01, Vol.109 (13), p.6-11
Hauptverfasser: Fahmy, Raafat, Zaher, Hegazy, Kandil, Abd Elfattah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 13
container_start_page 6
container_title International journal of computer applications
container_volume 109
creator Fahmy, Raafat
Zaher, Hegazy
Kandil, Abd Elfattah
description This paper outlines the basic differences between the Fuzzy logic techniques, including Mamdani , Sugeno fuzzy inference system models and Adaptive Neuro-Fuzzy Inference System (ANFIS) . The main motivation behind this research is to assess which approach provides the best performance for predicting prices of Fund. Due to the importance of performance in Economy, the Mamdani , Sugeno models and ANFIS are compared with the actual values. Fuzzy inference systems (Mamdani , Sugeno and ANFIS fuzzy models ) can be used to predict the weekly prices of Fund for the Egyptian Market. The application results indicate that (ANFIS) model is better than that of Mamdani and Sugeno . The results of the three fuzzy inference systems (FIS) are compared.
doi_str_mv 10.5120/19246-0604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669902108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3594448171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1734-d5aaf732b1f9d10a9d3bfb93a5a29433f322fdf294e08bed2d4bddc57e007ca53</originalsourceid><addsrcrecordid>eNpdkN1LwzAUxYsoOOZe_AsCvkyhmo9-5XGMTQcDBfW5pMmNZrRNTVpG99ebTR_E-3IP9_44HE4UXRN8nxKKHwinSRbjDCdn0QTzPI2LosjP_-jLaOb9DodhnGY8mURmgZa26YQz3raogn4P0KL1cDiMaNNqcNBKQK-j76HxSFuHXhwoI3sT8Pne9J9o0XW1keJ06W34GwkeWR1cWoVMi1YfY9ffXkUXWtQeZr97Gr2vV2_Lp3j7_LhZLraxJDlLYpUKoXNGK6K5IlhwxSpdcSZSQXnCmGaUaqWDBlxUoKhKKqVkmgPGuRQpm0bzH9_O2a8BfF82xkuoa9GCHXxJsoxzTAkuAnrzD93ZwbUhXaDSNE8Kkh2pux9KOuu9A112zjTCjSXB5bH48lR8eSyefQP-c3Sy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655748168</pqid></control><display><type>article</type><title>A Comparison between Fuzzy Inference Systems for Prediction (with Application to Prices of Fund in Egypt)</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fahmy, Raafat ; Zaher, Hegazy ; Kandil, Abd Elfattah</creator><creatorcontrib>Fahmy, Raafat ; Zaher, Hegazy ; Kandil, Abd Elfattah</creatorcontrib><description>This paper outlines the basic differences between the Fuzzy logic techniques, including Mamdani , Sugeno fuzzy inference system models and Adaptive Neuro-Fuzzy Inference System (ANFIS) . The main motivation behind this research is to assess which approach provides the best performance for predicting prices of Fund. Due to the importance of performance in Economy, the Mamdani , Sugeno models and ANFIS are compared with the actual values. Fuzzy inference systems (Mamdani , Sugeno and ANFIS fuzzy models ) can be used to predict the weekly prices of Fund for the Egyptian Market. The application results indicate that (ANFIS) model is better than that of Mamdani and Sugeno . The results of the three fuzzy inference systems (FIS) are compared.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/19246-0604</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Adaptive systems ; Artificial neural networks ; Economics ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Inference ; Mathematical models</subject><ispartof>International journal of computer applications, 2015-01, Vol.109 (13), p.6-11</ispartof><rights>Copyright Foundation of Computer Science 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1734-d5aaf732b1f9d10a9d3bfb93a5a29433f322fdf294e08bed2d4bddc57e007ca53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fahmy, Raafat</creatorcontrib><creatorcontrib>Zaher, Hegazy</creatorcontrib><creatorcontrib>Kandil, Abd Elfattah</creatorcontrib><title>A Comparison between Fuzzy Inference Systems for Prediction (with Application to Prices of Fund in Egypt)</title><title>International journal of computer applications</title><description>This paper outlines the basic differences between the Fuzzy logic techniques, including Mamdani , Sugeno fuzzy inference system models and Adaptive Neuro-Fuzzy Inference System (ANFIS) . The main motivation behind this research is to assess which approach provides the best performance for predicting prices of Fund. Due to the importance of performance in Economy, the Mamdani , Sugeno models and ANFIS are compared with the actual values. Fuzzy inference systems (Mamdani , Sugeno and ANFIS fuzzy models ) can be used to predict the weekly prices of Fund for the Egyptian Market. The application results indicate that (ANFIS) model is better than that of Mamdani and Sugeno . The results of the three fuzzy inference systems (FIS) are compared.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Economics</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Inference</subject><subject>Mathematical models</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkN1LwzAUxYsoOOZe_AsCvkyhmo9-5XGMTQcDBfW5pMmNZrRNTVpG99ebTR_E-3IP9_44HE4UXRN8nxKKHwinSRbjDCdn0QTzPI2LosjP_-jLaOb9DodhnGY8mURmgZa26YQz3raogn4P0KL1cDiMaNNqcNBKQK-j76HxSFuHXhwoI3sT8Pne9J9o0XW1keJ06W34GwkeWR1cWoVMi1YfY9ffXkUXWtQeZr97Gr2vV2_Lp3j7_LhZLraxJDlLYpUKoXNGK6K5IlhwxSpdcSZSQXnCmGaUaqWDBlxUoKhKKqVkmgPGuRQpm0bzH9_O2a8BfF82xkuoa9GCHXxJsoxzTAkuAnrzD93ZwbUhXaDSNE8Kkh2pux9KOuu9A112zjTCjSXB5bH48lR8eSyefQP-c3Sy</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Fahmy, Raafat</creator><creator>Zaher, Hegazy</creator><creator>Kandil, Abd Elfattah</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>A Comparison between Fuzzy Inference Systems for Prediction (with Application to Prices of Fund in Egypt)</title><author>Fahmy, Raafat ; Zaher, Hegazy ; Kandil, Abd Elfattah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1734-d5aaf732b1f9d10a9d3bfb93a5a29433f322fdf294e08bed2d4bddc57e007ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Economics</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Inference</topic><topic>Mathematical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Fahmy, Raafat</creatorcontrib><creatorcontrib>Zaher, Hegazy</creatorcontrib><creatorcontrib>Kandil, Abd Elfattah</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahmy, Raafat</au><au>Zaher, Hegazy</au><au>Kandil, Abd Elfattah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison between Fuzzy Inference Systems for Prediction (with Application to Prices of Fund in Egypt)</atitle><jtitle>International journal of computer applications</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>109</volume><issue>13</issue><spage>6</spage><epage>11</epage><pages>6-11</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>This paper outlines the basic differences between the Fuzzy logic techniques, including Mamdani , Sugeno fuzzy inference system models and Adaptive Neuro-Fuzzy Inference System (ANFIS) . The main motivation behind this research is to assess which approach provides the best performance for predicting prices of Fund. Due to the importance of performance in Economy, the Mamdani , Sugeno models and ANFIS are compared with the actual values. Fuzzy inference systems (Mamdani , Sugeno and ANFIS fuzzy models ) can be used to predict the weekly prices of Fund for the Egyptian Market. The application results indicate that (ANFIS) model is better than that of Mamdani and Sugeno . The results of the three fuzzy inference systems (FIS) are compared.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/19246-0604</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2015-01, Vol.109 (13), p.6-11
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1669902108
source EZB-FREE-00999 freely available EZB journals
subjects Adaptive systems
Artificial neural networks
Economics
Fuzzy
Fuzzy logic
Fuzzy set theory
Inference
Mathematical models
title A Comparison between Fuzzy Inference Systems for Prediction (with Application to Prices of Fund in Egypt)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20between%20Fuzzy%20Inference%20Systems%20for%20Prediction%20(with%20Application%20to%20Prices%20of%20Fund%20in%20Egypt)&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Fahmy,%20Raafat&rft.date=2015-01-01&rft.volume=109&rft.issue=13&rft.spage=6&rft.epage=11&rft.pages=6-11&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/19246-0604&rft_dat=%3Cproquest_cross%3E3594448171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655748168&rft_id=info:pmid/&rfr_iscdi=true