Strong light–matter coupling in two-dimensional atomic crystals

Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2015-01, Vol.9 (1), p.30-34
Hauptverfasser: Liu, Xiaoze, Galfsky, Tal, Sun, Zheng, Xia, Fengnian, Lin, Erh-chen, Lee, Yi-Hsien, Kéna-Cohen, Stéphane, Menon, Vinod M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 30
container_title Nature photonics
container_volume 9
creator Liu, Xiaoze
Galfsky, Tal
Sun, Zheng
Xia, Fengnian
Lin, Erh-chen
Lee, Yi-Hsien
Kéna-Cohen, Stéphane
Menon, Vinod M.
description Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS 2 ) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices. Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature.
doi_str_mv 10.1038/nphoton.2014.304
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669901010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669901010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI7uXRbcuOmYm6ZtshwG_2DAhboOaZrOZGibmqTI7HwH39AnMcMMIoLcxblcvnO4HIQuAc8AZ-ymH9Y22H5GMNBZhukRmkBJeUoZz45_dpafojPvNxjnGSdkgubPwdl-lbRmtQ5fH5-dDEG7RNlxaE28mz4J7zatTad7b2wv20QG2xmVKLf1Qbb-HJ00UfTFQafo9e72ZfGQLp_uHxfzZaookJDmjMqalDnXWkMOwAtZEcyzStacaUJAltBoCbzMKlLwKqdKlayoAVeSNBGcout97uDs26h9EJ3xSret7LUdvYCi4BxDnIhe_UE3dnTx9x2VM6AMWBkpvKeUs9473YjBmU66rQAsdp2KQ6di16mInUYL7C0-ov1Ku1_B_3m-ATmefSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658148187</pqid></control><display><type>article</type><title>Strong light–matter coupling in two-dimensional atomic crystals</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Liu, Xiaoze ; Galfsky, Tal ; Sun, Zheng ; Xia, Fengnian ; Lin, Erh-chen ; Lee, Yi-Hsien ; Kéna-Cohen, Stéphane ; Menon, Vinod M.</creator><creatorcontrib>Liu, Xiaoze ; Galfsky, Tal ; Sun, Zheng ; Xia, Fengnian ; Lin, Erh-chen ; Lee, Yi-Hsien ; Kéna-Cohen, Stéphane ; Menon, Vinod M.</creatorcontrib><description>Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS 2 ) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices. Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2014.304</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1097 ; 639/624/400/2797 ; Applied and Technical Physics ; Crystals ; Devices ; Formations ; Graphene ; Joining ; Microcavities ; Molybdenum ; Molybdenum disulfide ; Physics ; Polaritons ; Quantum Physics ; Two dimensional</subject><ispartof>Nature photonics, 2015-01, Vol.9 (1), p.30-34</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</citedby><cites>FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</cites><orcidid>0000-0001-5176-368X ; 0000-0002-0832-6369 ; 0000-0003-2409-7575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2014.304$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2014.304$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Xiaoze</creatorcontrib><creatorcontrib>Galfsky, Tal</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Lin, Erh-chen</creatorcontrib><creatorcontrib>Lee, Yi-Hsien</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Menon, Vinod M.</creatorcontrib><title>Strong light–matter coupling in two-dimensional atomic crystals</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS 2 ) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices. Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature.</description><subject>639/624/399/1097</subject><subject>639/624/400/2797</subject><subject>Applied and Technical Physics</subject><subject>Crystals</subject><subject>Devices</subject><subject>Formations</subject><subject>Graphene</subject><subject>Joining</subject><subject>Microcavities</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Quantum Physics</subject><subject>Two dimensional</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxDAUhYMoOI7uXRbcuOmYm6ZtshwG_2DAhboOaZrOZGibmqTI7HwH39AnMcMMIoLcxblcvnO4HIQuAc8AZ-ymH9Y22H5GMNBZhukRmkBJeUoZz45_dpafojPvNxjnGSdkgubPwdl-lbRmtQ5fH5-dDEG7RNlxaE28mz4J7zatTad7b2wv20QG2xmVKLf1Qbb-HJ00UfTFQafo9e72ZfGQLp_uHxfzZaookJDmjMqalDnXWkMOwAtZEcyzStacaUJAltBoCbzMKlLwKqdKlayoAVeSNBGcout97uDs26h9EJ3xSret7LUdvYCi4BxDnIhe_UE3dnTx9x2VM6AMWBkpvKeUs9473YjBmU66rQAsdp2KQ6di16mInUYL7C0-ov1Ku1_B_3m-ATmefSI</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Liu, Xiaoze</creator><creator>Galfsky, Tal</creator><creator>Sun, Zheng</creator><creator>Xia, Fengnian</creator><creator>Lin, Erh-chen</creator><creator>Lee, Yi-Hsien</creator><creator>Kéna-Cohen, Stéphane</creator><creator>Menon, Vinod M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5176-368X</orcidid><orcidid>https://orcid.org/0000-0002-0832-6369</orcidid><orcidid>https://orcid.org/0000-0003-2409-7575</orcidid></search><sort><creationdate>20150101</creationdate><title>Strong light–matter coupling in two-dimensional atomic crystals</title><author>Liu, Xiaoze ; Galfsky, Tal ; Sun, Zheng ; Xia, Fengnian ; Lin, Erh-chen ; Lee, Yi-Hsien ; Kéna-Cohen, Stéphane ; Menon, Vinod M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/624/399/1097</topic><topic>639/624/400/2797</topic><topic>Applied and Technical Physics</topic><topic>Crystals</topic><topic>Devices</topic><topic>Formations</topic><topic>Graphene</topic><topic>Joining</topic><topic>Microcavities</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Quantum Physics</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoze</creatorcontrib><creatorcontrib>Galfsky, Tal</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Lin, Erh-chen</creatorcontrib><creatorcontrib>Lee, Yi-Hsien</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Menon, Vinod M.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoze</au><au>Galfsky, Tal</au><au>Sun, Zheng</au><au>Xia, Fengnian</au><au>Lin, Erh-chen</au><au>Lee, Yi-Hsien</au><au>Kéna-Cohen, Stéphane</au><au>Menon, Vinod M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong light–matter coupling in two-dimensional atomic crystals</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>30</spage><epage>34</epage><pages>30-34</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS 2 ) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices. Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2014.304</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5176-368X</orcidid><orcidid>https://orcid.org/0000-0002-0832-6369</orcidid><orcidid>https://orcid.org/0000-0003-2409-7575</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2015-01, Vol.9 (1), p.30-34
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_miscellaneous_1669901010
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/624/399/1097
639/624/400/2797
Applied and Technical Physics
Crystals
Devices
Formations
Graphene
Joining
Microcavities
Molybdenum
Molybdenum disulfide
Physics
Polaritons
Quantum Physics
Two dimensional
title Strong light–matter coupling in two-dimensional atomic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20light%E2%80%93matter%20coupling%20in%20two-dimensional%20atomic%20crystals&rft.jtitle=Nature%20photonics&rft.au=Liu,%20Xiaoze&rft.date=2015-01-01&rft.volume=9&rft.issue=1&rft.spage=30&rft.epage=34&rft.pages=30-34&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2014.304&rft_dat=%3Cproquest_cross%3E1669901010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658148187&rft_id=info:pmid/&rfr_iscdi=true