Strong light–matter coupling in two-dimensional atomic crystals
Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2015-01, Vol.9 (1), p.30-34 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | Nature photonics |
container_volume | 9 |
creator | Liu, Xiaoze Galfsky, Tal Sun, Zheng Xia, Fengnian Lin, Erh-chen Lee, Yi-Hsien Kéna-Cohen, Stéphane Menon, Vinod M. |
description | Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS
2
) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices.
Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature. |
doi_str_mv | 10.1038/nphoton.2014.304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669901010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669901010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI7uXRbcuOmYm6ZtshwG_2DAhboOaZrOZGibmqTI7HwH39AnMcMMIoLcxblcvnO4HIQuAc8AZ-ymH9Y22H5GMNBZhukRmkBJeUoZz45_dpafojPvNxjnGSdkgubPwdl-lbRmtQ5fH5-dDEG7RNlxaE28mz4J7zatTad7b2wv20QG2xmVKLf1Qbb-HJ00UfTFQafo9e72ZfGQLp_uHxfzZaookJDmjMqalDnXWkMOwAtZEcyzStacaUJAltBoCbzMKlLwKqdKlayoAVeSNBGcout97uDs26h9EJ3xSret7LUdvYCi4BxDnIhe_UE3dnTx9x2VM6AMWBkpvKeUs9473YjBmU66rQAsdp2KQ6di16mInUYL7C0-ov1Ku1_B_3m-ATmefSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658148187</pqid></control><display><type>article</type><title>Strong light–matter coupling in two-dimensional atomic crystals</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Liu, Xiaoze ; Galfsky, Tal ; Sun, Zheng ; Xia, Fengnian ; Lin, Erh-chen ; Lee, Yi-Hsien ; Kéna-Cohen, Stéphane ; Menon, Vinod M.</creator><creatorcontrib>Liu, Xiaoze ; Galfsky, Tal ; Sun, Zheng ; Xia, Fengnian ; Lin, Erh-chen ; Lee, Yi-Hsien ; Kéna-Cohen, Stéphane ; Menon, Vinod M.</creatorcontrib><description>Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS
2
) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices.
Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2014.304</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1097 ; 639/624/400/2797 ; Applied and Technical Physics ; Crystals ; Devices ; Formations ; Graphene ; Joining ; Microcavities ; Molybdenum ; Molybdenum disulfide ; Physics ; Polaritons ; Quantum Physics ; Two dimensional</subject><ispartof>Nature photonics, 2015-01, Vol.9 (1), p.30-34</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</citedby><cites>FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</cites><orcidid>0000-0001-5176-368X ; 0000-0002-0832-6369 ; 0000-0003-2409-7575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2014.304$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2014.304$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Xiaoze</creatorcontrib><creatorcontrib>Galfsky, Tal</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Lin, Erh-chen</creatorcontrib><creatorcontrib>Lee, Yi-Hsien</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Menon, Vinod M.</creatorcontrib><title>Strong light–matter coupling in two-dimensional atomic crystals</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS
2
) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices.
Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature.</description><subject>639/624/399/1097</subject><subject>639/624/400/2797</subject><subject>Applied and Technical Physics</subject><subject>Crystals</subject><subject>Devices</subject><subject>Formations</subject><subject>Graphene</subject><subject>Joining</subject><subject>Microcavities</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Quantum Physics</subject><subject>Two dimensional</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxDAUhYMoOI7uXRbcuOmYm6ZtshwG_2DAhboOaZrOZGibmqTI7HwH39AnMcMMIoLcxblcvnO4HIQuAc8AZ-ymH9Y22H5GMNBZhukRmkBJeUoZz45_dpafojPvNxjnGSdkgubPwdl-lbRmtQ5fH5-dDEG7RNlxaE28mz4J7zatTad7b2wv20QG2xmVKLf1Qbb-HJ00UfTFQafo9e72ZfGQLp_uHxfzZaookJDmjMqalDnXWkMOwAtZEcyzStacaUJAltBoCbzMKlLwKqdKlayoAVeSNBGcout97uDs26h9EJ3xSret7LUdvYCi4BxDnIhe_UE3dnTx9x2VM6AMWBkpvKeUs9473YjBmU66rQAsdp2KQ6di16mInUYL7C0-ov1Ku1_B_3m-ATmefSI</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Liu, Xiaoze</creator><creator>Galfsky, Tal</creator><creator>Sun, Zheng</creator><creator>Xia, Fengnian</creator><creator>Lin, Erh-chen</creator><creator>Lee, Yi-Hsien</creator><creator>Kéna-Cohen, Stéphane</creator><creator>Menon, Vinod M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5176-368X</orcidid><orcidid>https://orcid.org/0000-0002-0832-6369</orcidid><orcidid>https://orcid.org/0000-0003-2409-7575</orcidid></search><sort><creationdate>20150101</creationdate><title>Strong light–matter coupling in two-dimensional atomic crystals</title><author>Liu, Xiaoze ; Galfsky, Tal ; Sun, Zheng ; Xia, Fengnian ; Lin, Erh-chen ; Lee, Yi-Hsien ; Kéna-Cohen, Stéphane ; Menon, Vinod M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-584ad2759eee151196ab2093bad98e221a71fea1973b269b54cc786d10ba2f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/624/399/1097</topic><topic>639/624/400/2797</topic><topic>Applied and Technical Physics</topic><topic>Crystals</topic><topic>Devices</topic><topic>Formations</topic><topic>Graphene</topic><topic>Joining</topic><topic>Microcavities</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Quantum Physics</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoze</creatorcontrib><creatorcontrib>Galfsky, Tal</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Lin, Erh-chen</creatorcontrib><creatorcontrib>Lee, Yi-Hsien</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Menon, Vinod M.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoze</au><au>Galfsky, Tal</au><au>Sun, Zheng</au><au>Xia, Fengnian</au><au>Lin, Erh-chen</au><au>Lee, Yi-Hsien</au><au>Kéna-Cohen, Stéphane</au><au>Menon, Vinod M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong light–matter coupling in two-dimensional atomic crystals</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>30</spage><epage>34</epage><pages>30-34</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS
2
) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices.
Microcavity polaritons—the bosonic quasiparticles that result from strong light–matter coupling—are observed for the first time in a dielectric cavity containing a monolayer of molybdenum disulphide at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2014.304</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5176-368X</orcidid><orcidid>https://orcid.org/0000-0002-0832-6369</orcidid><orcidid>https://orcid.org/0000-0003-2409-7575</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2015-01, Vol.9 (1), p.30-34 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669901010 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/624/399/1097 639/624/400/2797 Applied and Technical Physics Crystals Devices Formations Graphene Joining Microcavities Molybdenum Molybdenum disulfide Physics Polaritons Quantum Physics Two dimensional |
title | Strong light–matter coupling in two-dimensional atomic crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20light%E2%80%93matter%20coupling%20in%20two-dimensional%20atomic%20crystals&rft.jtitle=Nature%20photonics&rft.au=Liu,%20Xiaoze&rft.date=2015-01-01&rft.volume=9&rft.issue=1&rft.spage=30&rft.epage=34&rft.pages=30-34&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2014.304&rft_dat=%3Cproquest_cross%3E1669901010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658148187&rft_id=info:pmid/&rfr_iscdi=true |