Multisensor information integration for online wear condition monitoring of diesel engines
A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient w...
Gespeichert in:
Veröffentlicht in: | Tribology international 2015-02, Vol.82, p.68-77 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | |
container_start_page | 68 |
container_title | Tribology international |
container_volume | 82 |
creator | Cao, Wei Dong, Guangneng Chen, Wei Wu, Jiaoyi Xie, You-Bai |
description | A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault.
•The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition. |
doi_str_mv | 10.1016/j.triboint.2014.09.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669898863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X14003442</els_id><sourcerecordid>1669898863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfboZdfJZpuPm1L8gooXBfESstnZkrJNapIq_nu3Vs-e5mXmfYeZh5BzChUFyi9XVY6uDc7nqgbaVKAqqOGATKgUqqwb3hySCTCgJRfq9ZicpLQCANEoMSFvj9shu4Q-hVg434e4NtkFP-qMy7jXY7cIfnAei080sbDBd-5nsg7e5RCdXxahLzqHCYcC_XK0plNy1Jsh4dlvnZKX25vn-X25eLp7mF8vSsuaWS47FKyvW0tZD6KbtSCkqBnI8XoU1IBEw0H2LW3rllrJjGo4xV4xYRhXVLApudjv3cTwvsWU9doli8NgPIZt0pRzJZWUnI1WvrfaGFKK2OtNdGsTvzQFvYOpV_oPpt7B1KD0CHMMXu2DOD7y4TDqZB16i52LaLPugvtvxTemRIMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669898863</pqid></control><display><type>article</type><title>Multisensor information integration for online wear condition monitoring of diesel engines</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cao, Wei ; Dong, Guangneng ; Chen, Wei ; Wu, Jiaoyi ; Xie, You-Bai</creator><creatorcontrib>Cao, Wei ; Dong, Guangneng ; Chen, Wei ; Wu, Jiaoyi ; Xie, You-Bai</creatorcontrib><description>A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault.
•The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2014.09.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coefficients ; Degradation ; Diesel engine ; Diesel engines ; Ferrography ; Monitoring ; Online ; Performance degradation ; Sensors ; Warning ; Wear ; Wear monitoring</subject><ispartof>Tribology international, 2015-02, Vol.82, p.68-77</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</citedby><cites>FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.triboint.2014.09.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Dong, Guangneng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wu, Jiaoyi</creatorcontrib><creatorcontrib>Xie, You-Bai</creatorcontrib><title>Multisensor information integration for online wear condition monitoring of diesel engines</title><title>Tribology international</title><description>A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault.
•The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition.</description><subject>Coefficients</subject><subject>Degradation</subject><subject>Diesel engine</subject><subject>Diesel engines</subject><subject>Ferrography</subject><subject>Monitoring</subject><subject>Online</subject><subject>Performance degradation</subject><subject>Sensors</subject><subject>Warning</subject><subject>Wear</subject><subject>Wear monitoring</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfboZdfJZpuPm1L8gooXBfESstnZkrJNapIq_nu3Vs-e5mXmfYeZh5BzChUFyi9XVY6uDc7nqgbaVKAqqOGATKgUqqwb3hySCTCgJRfq9ZicpLQCANEoMSFvj9shu4Q-hVg434e4NtkFP-qMy7jXY7cIfnAei080sbDBd-5nsg7e5RCdXxahLzqHCYcC_XK0plNy1Jsh4dlvnZKX25vn-X25eLp7mF8vSsuaWS47FKyvW0tZD6KbtSCkqBnI8XoU1IBEw0H2LW3rllrJjGo4xV4xYRhXVLApudjv3cTwvsWU9doli8NgPIZt0pRzJZWUnI1WvrfaGFKK2OtNdGsTvzQFvYOpV_oPpt7B1KD0CHMMXu2DOD7y4TDqZB16i52LaLPugvtvxTemRIMo</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Cao, Wei</creator><creator>Dong, Guangneng</creator><creator>Chen, Wei</creator><creator>Wu, Jiaoyi</creator><creator>Xie, You-Bai</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Multisensor information integration for online wear condition monitoring of diesel engines</title><author>Cao, Wei ; Dong, Guangneng ; Chen, Wei ; Wu, Jiaoyi ; Xie, You-Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coefficients</topic><topic>Degradation</topic><topic>Diesel engine</topic><topic>Diesel engines</topic><topic>Ferrography</topic><topic>Monitoring</topic><topic>Online</topic><topic>Performance degradation</topic><topic>Sensors</topic><topic>Warning</topic><topic>Wear</topic><topic>Wear monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Dong, Guangneng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wu, Jiaoyi</creatorcontrib><creatorcontrib>Xie, You-Bai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wei</au><au>Dong, Guangneng</au><au>Chen, Wei</au><au>Wu, Jiaoyi</au><au>Xie, You-Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisensor information integration for online wear condition monitoring of diesel engines</atitle><jtitle>Tribology international</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>82</volume><spage>68</spage><epage>77</epage><pages>68-77</pages><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault.
•The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2014.09.020</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-679X |
ispartof | Tribology international, 2015-02, Vol.82, p.68-77 |
issn | 0301-679X 1879-2464 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669898863 |
source | Access via ScienceDirect (Elsevier) |
subjects | Coefficients Degradation Diesel engine Diesel engines Ferrography Monitoring Online Performance degradation Sensors Warning Wear Wear monitoring |
title | Multisensor information integration for online wear condition monitoring of diesel engines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisensor%20information%20integration%20for%20online%20wear%20condition%20monitoring%20of%20diesel%20engines&rft.jtitle=Tribology%20international&rft.au=Cao,%20Wei&rft.date=2015-02-01&rft.volume=82&rft.spage=68&rft.epage=77&rft.pages=68-77&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2014.09.020&rft_dat=%3Cproquest_cross%3E1669898863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669898863&rft_id=info:pmid/&rft_els_id=S0301679X14003442&rfr_iscdi=true |