Multisensor information integration for online wear condition monitoring of diesel engines

A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology international 2015-02, Vol.82, p.68-77
Hauptverfasser: Cao, Wei, Dong, Guangneng, Chen, Wei, Wu, Jiaoyi, Xie, You-Bai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 68
container_title Tribology international
container_volume 82
creator Cao, Wei
Dong, Guangneng
Chen, Wei
Wu, Jiaoyi
Xie, You-Bai
description A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault. •The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition.
doi_str_mv 10.1016/j.triboint.2014.09.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669898863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X14003442</els_id><sourcerecordid>1669898863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QfboZdfJZpuPm1L8gooXBfESstnZkrJNapIq_nu3Vs-e5mXmfYeZh5BzChUFyi9XVY6uDc7nqgbaVKAqqOGATKgUqqwb3hySCTCgJRfq9ZicpLQCANEoMSFvj9shu4Q-hVg434e4NtkFP-qMy7jXY7cIfnAei080sbDBd-5nsg7e5RCdXxahLzqHCYcC_XK0plNy1Jsh4dlvnZKX25vn-X25eLp7mF8vSsuaWS47FKyvW0tZD6KbtSCkqBnI8XoU1IBEw0H2LW3rllrJjGo4xV4xYRhXVLApudjv3cTwvsWU9doli8NgPIZt0pRzJZWUnI1WvrfaGFKK2OtNdGsTvzQFvYOpV_oPpt7B1KD0CHMMXu2DOD7y4TDqZB16i52LaLPugvtvxTemRIMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669898863</pqid></control><display><type>article</type><title>Multisensor information integration for online wear condition monitoring of diesel engines</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cao, Wei ; Dong, Guangneng ; Chen, Wei ; Wu, Jiaoyi ; Xie, You-Bai</creator><creatorcontrib>Cao, Wei ; Dong, Guangneng ; Chen, Wei ; Wu, Jiaoyi ; Xie, You-Bai</creatorcontrib><description>A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault. •The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2014.09.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coefficients ; Degradation ; Diesel engine ; Diesel engines ; Ferrography ; Monitoring ; Online ; Performance degradation ; Sensors ; Warning ; Wear ; Wear monitoring</subject><ispartof>Tribology international, 2015-02, Vol.82, p.68-77</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</citedby><cites>FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.triboint.2014.09.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Dong, Guangneng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wu, Jiaoyi</creatorcontrib><creatorcontrib>Xie, You-Bai</creatorcontrib><title>Multisensor information integration for online wear condition monitoring of diesel engines</title><title>Tribology international</title><description>A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault. •The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition.</description><subject>Coefficients</subject><subject>Degradation</subject><subject>Diesel engine</subject><subject>Diesel engines</subject><subject>Ferrography</subject><subject>Monitoring</subject><subject>Online</subject><subject>Performance degradation</subject><subject>Sensors</subject><subject>Warning</subject><subject>Wear</subject><subject>Wear monitoring</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QfboZdfJZpuPm1L8gooXBfESstnZkrJNapIq_nu3Vs-e5mXmfYeZh5BzChUFyi9XVY6uDc7nqgbaVKAqqOGATKgUqqwb3hySCTCgJRfq9ZicpLQCANEoMSFvj9shu4Q-hVg434e4NtkFP-qMy7jXY7cIfnAei080sbDBd-5nsg7e5RCdXxahLzqHCYcC_XK0plNy1Jsh4dlvnZKX25vn-X25eLp7mF8vSsuaWS47FKyvW0tZD6KbtSCkqBnI8XoU1IBEw0H2LW3rllrJjGo4xV4xYRhXVLApudjv3cTwvsWU9doli8NgPIZt0pRzJZWUnI1WvrfaGFKK2OtNdGsTvzQFvYOpV_oPpt7B1KD0CHMMXu2DOD7y4TDqZB16i52LaLPugvtvxTemRIMo</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Cao, Wei</creator><creator>Dong, Guangneng</creator><creator>Chen, Wei</creator><creator>Wu, Jiaoyi</creator><creator>Xie, You-Bai</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Multisensor information integration for online wear condition monitoring of diesel engines</title><author>Cao, Wei ; Dong, Guangneng ; Chen, Wei ; Wu, Jiaoyi ; Xie, You-Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-de73f2bc13f07d5b07872308187e71a08ea608fb1b2b1c83a9461ef937a369173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coefficients</topic><topic>Degradation</topic><topic>Diesel engine</topic><topic>Diesel engines</topic><topic>Ferrography</topic><topic>Monitoring</topic><topic>Online</topic><topic>Performance degradation</topic><topic>Sensors</topic><topic>Warning</topic><topic>Wear</topic><topic>Wear monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Dong, Guangneng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wu, Jiaoyi</creatorcontrib><creatorcontrib>Xie, You-Bai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wei</au><au>Dong, Guangneng</au><au>Chen, Wei</au><au>Wu, Jiaoyi</au><au>Xie, You-Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisensor information integration for online wear condition monitoring of diesel engines</atitle><jtitle>Tribology international</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>82</volume><spage>68</spage><epage>77</epage><pages>68-77</pages><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>A diesel engine bench test was performed, and the online visual ferrograph (OLVF) and performance monitoring sensors were used to evaluate engine wear. The sliding window method was used to segment OLVF-monitoring data; features such as probability of smaller value and accumulated wear coefficient were extracted to clarify wear degree. The weighted combination multisensor information integration method was developed to calculate current engine condition factors. The results show that OLVF monitoring exhibits more sensitivity than other performance monitoring sensors. Using multisensor information provides an early warning of performance degradation ~40h before the diesel engine experiences a catastrophic fault. •The wear of the diesel engine is monitored effectively using OLVF.•Performance parameter provides auxiliary information for wear state monitoring.•The variation trends of monitoring data can be acquired through feature extraction.•Weighted combination method realizes the early warning of abnormal wear condition.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2014.09.020</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-679X
ispartof Tribology international, 2015-02, Vol.82, p.68-77
issn 0301-679X
1879-2464
language eng
recordid cdi_proquest_miscellaneous_1669898863
source Access via ScienceDirect (Elsevier)
subjects Coefficients
Degradation
Diesel engine
Diesel engines
Ferrography
Monitoring
Online
Performance degradation
Sensors
Warning
Wear
Wear monitoring
title Multisensor information integration for online wear condition monitoring of diesel engines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisensor%20information%20integration%20for%20online%20wear%20condition%20monitoring%20of%20diesel%20engines&rft.jtitle=Tribology%20international&rft.au=Cao,%20Wei&rft.date=2015-02-01&rft.volume=82&rft.spage=68&rft.epage=77&rft.pages=68-77&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2014.09.020&rft_dat=%3Cproquest_cross%3E1669898863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669898863&rft_id=info:pmid/&rft_els_id=S0301679X14003442&rfr_iscdi=true