Integrated calibration of magnetic gradient tensor system

Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2015-01, Vol.374, p.289-297
Hauptverfasser: Gang, Yin, Yingtang, Zhang, Hongbo, Fan, GuoQuan, Ren, Zhining, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue
container_start_page 289
container_title Journal of magnetism and magnetic materials
container_volume 374
creator Gang, Yin
Yingtang, Zhang
Hongbo, Fan
GuoQuan, Ren
Zhining, Li
description Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly. •Integrated calibration of magnetic gradient tensor system is achieved.•Error parameters are estimated using a least squares ellipsoid fitting algorithm.•Linear and nonlinear estimations are proposed for the combined misalignment errors.
doi_str_mv 10.1016/j.jmmm.2014.08.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669898311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885314007100</els_id><sourcerecordid>1669898311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-710604840127b141087841d39a7752b336f6e22f6d17d76bb240294fd0c7b91c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhbNQsFb_gKtZupnx5tEkA26k-CgU3Og6zCR3SoZ51CQV-u9Nqeuu7oFzzoXzEfJAoaJA5VNf9eM4VgyoqEBXwNgVWQAHUWq94jfkNsYeILtaLki9mRLuQpPQFbYZfJuln6di7oqx2U2YvC2y7TxOqUg4xTkU8RgTjnfkumuGiPf_d0m-316_1h_l9vN9s37ZlpZznkpFQYLQAihTLRUUtNKCOl43Sq1Yy7nsJDLWSUeVU7JtmQBWi86BVW1NLV-Sx_PffZh_DhiTGX20OAzNhPMhGiplrWvNKc1Rdo7aMMcYsDP74McmHA0Fc2JjenNiY05sDGiT2eTS87mEecSvx2CizWstOh_QJuNmf6n-B41dbck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669898311</pqid></control><display><type>article</type><title>Integrated calibration of magnetic gradient tensor system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gang, Yin ; Yingtang, Zhang ; Hongbo, Fan ; GuoQuan, Ren ; Zhining, Li</creator><creatorcontrib>Gang, Yin ; Yingtang, Zhang ; Hongbo, Fan ; GuoQuan, Ren ; Zhining, Li</creatorcontrib><description>Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly. •Integrated calibration of magnetic gradient tensor system is achieved.•Error parameters are estimated using a least squares ellipsoid fitting algorithm.•Linear and nonlinear estimations are proposed for the combined misalignment errors.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2014.08.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Calibration ; Error compensation ; Errors ; Fittings ; Least squares ellipsoid fitting ; Magnetic gradient tensor ; Magnetometers ; Mathematical analysis ; Mathematical models ; Misalignment ; Parameter estimation ; Scalar calibration ; Strapdown system ; Tensors</subject><ispartof>Journal of magnetism and magnetic materials, 2015-01, Vol.374, p.289-297</ispartof><rights>2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-710604840127b141087841d39a7752b336f6e22f6d17d76bb240294fd0c7b91c3</citedby><cites>FETCH-LOGICAL-c333t-710604840127b141087841d39a7752b336f6e22f6d17d76bb240294fd0c7b91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2014.08.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gang, Yin</creatorcontrib><creatorcontrib>Yingtang, Zhang</creatorcontrib><creatorcontrib>Hongbo, Fan</creatorcontrib><creatorcontrib>GuoQuan, Ren</creatorcontrib><creatorcontrib>Zhining, Li</creatorcontrib><title>Integrated calibration of magnetic gradient tensor system</title><title>Journal of magnetism and magnetic materials</title><description>Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly. •Integrated calibration of magnetic gradient tensor system is achieved.•Error parameters are estimated using a least squares ellipsoid fitting algorithm.•Linear and nonlinear estimations are proposed for the combined misalignment errors.</description><subject>Calibration</subject><subject>Error compensation</subject><subject>Errors</subject><subject>Fittings</subject><subject>Least squares ellipsoid fitting</subject><subject>Magnetic gradient tensor</subject><subject>Magnetometers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Misalignment</subject><subject>Parameter estimation</subject><subject>Scalar calibration</subject><subject>Strapdown system</subject><subject>Tensors</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhbNQsFb_gKtZupnx5tEkA26k-CgU3Og6zCR3SoZ51CQV-u9Nqeuu7oFzzoXzEfJAoaJA5VNf9eM4VgyoqEBXwNgVWQAHUWq94jfkNsYeILtaLki9mRLuQpPQFbYZfJuln6di7oqx2U2YvC2y7TxOqUg4xTkU8RgTjnfkumuGiPf_d0m-316_1h_l9vN9s37ZlpZznkpFQYLQAihTLRUUtNKCOl43Sq1Yy7nsJDLWSUeVU7JtmQBWi86BVW1NLV-Sx_PffZh_DhiTGX20OAzNhPMhGiplrWvNKc1Rdo7aMMcYsDP74McmHA0Fc2JjenNiY05sDGiT2eTS87mEecSvx2CizWstOh_QJuNmf6n-B41dbck</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Gang, Yin</creator><creator>Yingtang, Zhang</creator><creator>Hongbo, Fan</creator><creator>GuoQuan, Ren</creator><creator>Zhining, Li</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150115</creationdate><title>Integrated calibration of magnetic gradient tensor system</title><author>Gang, Yin ; Yingtang, Zhang ; Hongbo, Fan ; GuoQuan, Ren ; Zhining, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-710604840127b141087841d39a7752b336f6e22f6d17d76bb240294fd0c7b91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calibration</topic><topic>Error compensation</topic><topic>Errors</topic><topic>Fittings</topic><topic>Least squares ellipsoid fitting</topic><topic>Magnetic gradient tensor</topic><topic>Magnetometers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Misalignment</topic><topic>Parameter estimation</topic><topic>Scalar calibration</topic><topic>Strapdown system</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gang, Yin</creatorcontrib><creatorcontrib>Yingtang, Zhang</creatorcontrib><creatorcontrib>Hongbo, Fan</creatorcontrib><creatorcontrib>GuoQuan, Ren</creatorcontrib><creatorcontrib>Zhining, Li</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gang, Yin</au><au>Yingtang, Zhang</au><au>Hongbo, Fan</au><au>GuoQuan, Ren</au><au>Zhining, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated calibration of magnetic gradient tensor system</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2015-01-15</date><risdate>2015</risdate><volume>374</volume><spage>289</spage><epage>297</epage><pages>289-297</pages><issn>0304-8853</issn><abstract>Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly. •Integrated calibration of magnetic gradient tensor system is achieved.•Error parameters are estimated using a least squares ellipsoid fitting algorithm.•Linear and nonlinear estimations are proposed for the combined misalignment errors.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2014.08.022</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2015-01, Vol.374, p.289-297
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_1669898311
source Elsevier ScienceDirect Journals Complete
subjects Calibration
Error compensation
Errors
Fittings
Least squares ellipsoid fitting
Magnetic gradient tensor
Magnetometers
Mathematical analysis
Mathematical models
Misalignment
Parameter estimation
Scalar calibration
Strapdown system
Tensors
title Integrated calibration of magnetic gradient tensor system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20calibration%20of%20magnetic%20gradient%20tensor%20system&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Gang,%20Yin&rft.date=2015-01-15&rft.volume=374&rft.spage=289&rft.epage=297&rft.pages=289-297&rft.issn=0304-8853&rft_id=info:doi/10.1016/j.jmmm.2014.08.022&rft_dat=%3Cproquest_cross%3E1669898311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669898311&rft_id=info:pmid/&rft_els_id=S0304885314007100&rfr_iscdi=true