Efficient Analytical Model of Conductivity of CNT/Polymer Composites for Wireless Gas Sensors

This paper presents an analytical model of conductivity and sensitivity of passive wireless sensors for biohazard gas detection with lower computational cost and reasonable accuracy. Based on the effect of electron tunneling among the carbon nanotubes embedded in a polymer matrix, an analytical mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2015-01, Vol.14 (1), p.118-129
Hauptverfasser: Rahman, Rubaiya, Servati, Peyman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 118
container_title IEEE transactions on nanotechnology
container_volume 14
creator Rahman, Rubaiya
Servati, Peyman
description This paper presents an analytical model of conductivity and sensitivity of passive wireless sensors for biohazard gas detection with lower computational cost and reasonable accuracy. Based on the effect of electron tunneling among the carbon nanotubes embedded in a polymer matrix, an analytical model for conductivity of the composite is presented. This model provides significantly lower computational cost as compared to the numerical resistive network models. By incorporation of electron tunneling effects, this model also provides closer approximation to experimental results in comparison to the models based on the percolation theory, which are highly relevant for filler/polymer composite applications designed around the percolation threshold. Using this conductivity model, the conductivity and sensitivity of the composite films are estimated in the presence of an organic gas. The change in the film resistance due to the absorption of the gas is investigated for different filler and gas concentrations. From the phase of the reflected radio frequency signal, the applications of the sensor for passive wireless gas sensing is estimated in a lossless transmission system terminated with a composite film as the load. This paper is useful for design and development of biohazard gas sensors for real-time remote monitoring.
doi_str_mv 10.1109/TNANO.2014.2371898
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669897468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6963427</ieee_id><sourcerecordid>1669897468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-58b0d7580b5ffb2b4b36120c587db142804f75c9d5ec453c231f16b24bd949083</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt_QC8BL17S7nd2j6XUKtRWsKIXWZLNLmxJsnU3EfLvTdriwdPMMM87ME8U3UIwgRCI6XY9W28mCEAyQTiFXPCzaAQFgQkAnJ73PcUsgYh-XkZXIewAgCmjfBR9LYyxyuq6iWd1VnaNVVkZv7hCl7Ez8dzVRasa-2Ob7jCvt9NXV3aV9v2u2rtgGx1i43z8Yb0udQjxMgvxm66D8-E6ujBZGfTNqY6j98fFdv6UrDbL5_lslSjMaJNQnoMipRzk1Jgc5STHDCKgKE-LHBLEATEpVaKgWhGKFcLQQJYjkheCCMDxOHo43t17993q0MjKBqXLMqu1a4OEjAkuUsIG9P4funOt718fKEIBpIyRnkJHSnkXgtdG7r2tMt9JCORgXB6My8G4PBnvQ3fHkNVa_wWYYJigFP8CPlh7-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645015664</pqid></control><display><type>article</type><title>Efficient Analytical Model of Conductivity of CNT/Polymer Composites for Wireless Gas Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Rahman, Rubaiya ; Servati, Peyman</creator><creatorcontrib>Rahman, Rubaiya ; Servati, Peyman</creatorcontrib><description>This paper presents an analytical model of conductivity and sensitivity of passive wireless sensors for biohazard gas detection with lower computational cost and reasonable accuracy. Based on the effect of electron tunneling among the carbon nanotubes embedded in a polymer matrix, an analytical model for conductivity of the composite is presented. This model provides significantly lower computational cost as compared to the numerical resistive network models. By incorporation of electron tunneling effects, this model also provides closer approximation to experimental results in comparison to the models based on the percolation theory, which are highly relevant for filler/polymer composite applications designed around the percolation threshold. Using this conductivity model, the conductivity and sensitivity of the composite films are estimated in the presence of an organic gas. The change in the film resistance due to the absorption of the gas is investigated for different filler and gas concentrations. From the phase of the reflected radio frequency signal, the applications of the sensor for passive wireless gas sensing is estimated in a lossless transmission system terminated with a composite film as the load. This paper is useful for design and development of biohazard gas sensors for real-time remote monitoring.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2014.2371898</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>carbon nanotube ; Computational efficiency ; Conductivity ; Electron tunneling ; Fillers ; Gas detectors ; Gas sensors ; Junctions ; Mathematical analysis ; Mathematical models ; modeling ; Nanocomposite ; Networks ; polymer ; Polymer matrix composites ; Polymers ; Sensitivity ; sensor ; Sensors ; Tunneling</subject><ispartof>IEEE transactions on nanotechnology, 2015-01, Vol.14 (1), p.118-129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-58b0d7580b5ffb2b4b36120c587db142804f75c9d5ec453c231f16b24bd949083</citedby><cites>FETCH-LOGICAL-c365t-58b0d7580b5ffb2b4b36120c587db142804f75c9d5ec453c231f16b24bd949083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6963427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6963427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahman, Rubaiya</creatorcontrib><creatorcontrib>Servati, Peyman</creatorcontrib><title>Efficient Analytical Model of Conductivity of CNT/Polymer Composites for Wireless Gas Sensors</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>This paper presents an analytical model of conductivity and sensitivity of passive wireless sensors for biohazard gas detection with lower computational cost and reasonable accuracy. Based on the effect of electron tunneling among the carbon nanotubes embedded in a polymer matrix, an analytical model for conductivity of the composite is presented. This model provides significantly lower computational cost as compared to the numerical resistive network models. By incorporation of electron tunneling effects, this model also provides closer approximation to experimental results in comparison to the models based on the percolation theory, which are highly relevant for filler/polymer composite applications designed around the percolation threshold. Using this conductivity model, the conductivity and sensitivity of the composite films are estimated in the presence of an organic gas. The change in the film resistance due to the absorption of the gas is investigated for different filler and gas concentrations. From the phase of the reflected radio frequency signal, the applications of the sensor for passive wireless gas sensing is estimated in a lossless transmission system terminated with a composite film as the load. This paper is useful for design and development of biohazard gas sensors for real-time remote monitoring.</description><subject>carbon nanotube</subject><subject>Computational efficiency</subject><subject>Conductivity</subject><subject>Electron tunneling</subject><subject>Fillers</subject><subject>Gas detectors</subject><subject>Gas sensors</subject><subject>Junctions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modeling</subject><subject>Nanocomposite</subject><subject>Networks</subject><subject>polymer</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Sensitivity</subject><subject>sensor</subject><subject>Sensors</subject><subject>Tunneling</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt_QC8BL17S7nd2j6XUKtRWsKIXWZLNLmxJsnU3EfLvTdriwdPMMM87ME8U3UIwgRCI6XY9W28mCEAyQTiFXPCzaAQFgQkAnJ73PcUsgYh-XkZXIewAgCmjfBR9LYyxyuq6iWd1VnaNVVkZv7hCl7Ez8dzVRasa-2Ob7jCvt9NXV3aV9v2u2rtgGx1i43z8Yb0udQjxMgvxm66D8-E6ujBZGfTNqY6j98fFdv6UrDbL5_lslSjMaJNQnoMipRzk1Jgc5STHDCKgKE-LHBLEATEpVaKgWhGKFcLQQJYjkheCCMDxOHo43t17993q0MjKBqXLMqu1a4OEjAkuUsIG9P4funOt718fKEIBpIyRnkJHSnkXgtdG7r2tMt9JCORgXB6My8G4PBnvQ3fHkNVa_wWYYJigFP8CPlh7-g</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Rahman, Rubaiya</creator><creator>Servati, Peyman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7SC</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>Efficient Analytical Model of Conductivity of CNT/Polymer Composites for Wireless Gas Sensors</title><author>Rahman, Rubaiya ; Servati, Peyman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-58b0d7580b5ffb2b4b36120c587db142804f75c9d5ec453c231f16b24bd949083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>carbon nanotube</topic><topic>Computational efficiency</topic><topic>Conductivity</topic><topic>Electron tunneling</topic><topic>Fillers</topic><topic>Gas detectors</topic><topic>Gas sensors</topic><topic>Junctions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modeling</topic><topic>Nanocomposite</topic><topic>Networks</topic><topic>polymer</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Sensitivity</topic><topic>sensor</topic><topic>Sensors</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Rubaiya</creatorcontrib><creatorcontrib>Servati, Peyman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahman, Rubaiya</au><au>Servati, Peyman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Analytical Model of Conductivity of CNT/Polymer Composites for Wireless Gas Sensors</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2015-01</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>118</spage><epage>129</epage><pages>118-129</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>This paper presents an analytical model of conductivity and sensitivity of passive wireless sensors for biohazard gas detection with lower computational cost and reasonable accuracy. Based on the effect of electron tunneling among the carbon nanotubes embedded in a polymer matrix, an analytical model for conductivity of the composite is presented. This model provides significantly lower computational cost as compared to the numerical resistive network models. By incorporation of electron tunneling effects, this model also provides closer approximation to experimental results in comparison to the models based on the percolation theory, which are highly relevant for filler/polymer composite applications designed around the percolation threshold. Using this conductivity model, the conductivity and sensitivity of the composite films are estimated in the presence of an organic gas. The change in the film resistance due to the absorption of the gas is investigated for different filler and gas concentrations. From the phase of the reflected radio frequency signal, the applications of the sensor for passive wireless gas sensing is estimated in a lossless transmission system terminated with a composite film as the load. This paper is useful for design and development of biohazard gas sensors for real-time remote monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2014.2371898</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2015-01, Vol.14 (1), p.118-129
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_miscellaneous_1669897468
source IEEE Electronic Library (IEL)
subjects carbon nanotube
Computational efficiency
Conductivity
Electron tunneling
Fillers
Gas detectors
Gas sensors
Junctions
Mathematical analysis
Mathematical models
modeling
Nanocomposite
Networks
polymer
Polymer matrix composites
Polymers
Sensitivity
sensor
Sensors
Tunneling
title Efficient Analytical Model of Conductivity of CNT/Polymer Composites for Wireless Gas Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Analytical%20Model%20of%20Conductivity%20of%20CNT/Polymer%20Composites%20for%20Wireless%20Gas%20Sensors&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Rahman,%20Rubaiya&rft.date=2015-01&rft.volume=14&rft.issue=1&rft.spage=118&rft.epage=129&rft.pages=118-129&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2014.2371898&rft_dat=%3Cproquest_RIE%3E1669897468%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645015664&rft_id=info:pmid/&rft_ieee_id=6963427&rfr_iscdi=true