Beyond cognition and affect: sensing the unconscious

In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behaviour & information technology 2015-03, Vol.34 (3), p.220-238
Hauptverfasser: Ivonin, Leonid, Chang, Huang-Ming, Díaz, Marta, Català, Andreu, Chen, Wei, Rauterberg, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 3
container_start_page 220
container_title Behaviour & information technology
container_volume 34
creator Ivonin, Leonid
Chang, Huang-Ming
Díaz, Marta
Català, Andreu
Chen, Wei
Rauterberg, Matthias
description In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.
doi_str_mv 10.1080/0144929X.2014.912353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669895265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669895265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJIZuPf5CDoZdevNXoy1YvJVmSthDIpYHchCKPUgWvlEo2Yf99ZDalkEOoQGhGPO_wDi8hZ0DXQHv6hYIQmum7NavVWgPjkn8gK-CKtZxSOCCrBWkX5pAclfJIKRWqZysiLnCX4tC49BDDFFJsbO2s9-imr03BWEJ8aKbf2MzRpVhcSHM5IR-9HQuevr7H5Pbq8tfmR3t98_3n5vy6dVLqqe2scr5DYb30FjsFkqN2mg-97iyyAWH5g2rQ9cKpexjA14OM9R1y6Pgxgf1cV2ZnMjrMzk4m2fCvWS6jHTNMUEVF1Xzea55y-jNjmcw2FIfjaCNW6waU0r2WTMn_QXvWQc9ZRT-9QR_TnGNdvlISpBJUqkqJV785lZLRm6cctjbvDFCzJGX-JmWWpMw-qSr7tpeF6FPe2ueUx8FMdjem7LONLhTD353wAghmmCc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651564056</pqid></control><display><type>article</type><title>Beyond cognition and affect: sensing the unconscious</title><source>Business Source Complete</source><source>Recercat</source><creator>Ivonin, Leonid ; Chang, Huang-Ming ; Díaz, Marta ; Català, Andreu ; Chen, Wei ; Rauterberg, Matthias</creator><creatorcontrib>Ivonin, Leonid ; Chang, Huang-Ming ; Díaz, Marta ; Català, Andreu ; Chen, Wei ; Rauterberg, Matthias</creatorcontrib><description>In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.</description><identifier>ISSN: 0144-929X</identifier><identifier>EISSN: 1362-3001</identifier><identifier>DOI: 10.1080/0144929X.2014.912353</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Affective Computing ; Aplicacions de la informàtica ; archetypes ; Ciències de la salut ; Classification ; Cognition ; Cognitive psychology ; Computer simulation ; Consciousness ; Data mining ; Disseny assistit per ordinador ; Emocions i cognició ; Emotions ; Human ; Human-computer interaction ; Informàtica ; Interacció persona-ordinador ; Mathematical models ; modelling ; Physiological psychology ; Physiological responses ; Psicologia ; Psychology ; Salut mental ; Statistical analysis ; unconscious ; User interfaces ; Wearable computers ; Àrees temàtiques de la UPC</subject><ispartof>Behaviour &amp; information technology, 2015-03, Vol.34 (3), p.220-238</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</citedby><cites>FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,26955,27905,27906</link.rule.ids></links><search><creatorcontrib>Ivonin, Leonid</creatorcontrib><creatorcontrib>Chang, Huang-Ming</creatorcontrib><creatorcontrib>Díaz, Marta</creatorcontrib><creatorcontrib>Català, Andreu</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><title>Beyond cognition and affect: sensing the unconscious</title><title>Behaviour &amp; information technology</title><description>In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.</description><subject>Affective Computing</subject><subject>Aplicacions de la informàtica</subject><subject>archetypes</subject><subject>Ciències de la salut</subject><subject>Classification</subject><subject>Cognition</subject><subject>Cognitive psychology</subject><subject>Computer simulation</subject><subject>Consciousness</subject><subject>Data mining</subject><subject>Disseny assistit per ordinador</subject><subject>Emocions i cognició</subject><subject>Emotions</subject><subject>Human</subject><subject>Human-computer interaction</subject><subject>Informàtica</subject><subject>Interacció persona-ordinador</subject><subject>Mathematical models</subject><subject>modelling</subject><subject>Physiological psychology</subject><subject>Physiological responses</subject><subject>Psicologia</subject><subject>Psychology</subject><subject>Salut mental</subject><subject>Statistical analysis</subject><subject>unconscious</subject><subject>User interfaces</subject><subject>Wearable computers</subject><subject>Àrees temàtiques de la UPC</subject><issn>0144-929X</issn><issn>1362-3001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkU1r3DAQhkVJIZuPf5CDoZdevNXoy1YvJVmSthDIpYHchCKPUgWvlEo2Yf99ZDalkEOoQGhGPO_wDi8hZ0DXQHv6hYIQmum7NavVWgPjkn8gK-CKtZxSOCCrBWkX5pAclfJIKRWqZysiLnCX4tC49BDDFFJsbO2s9-imr03BWEJ8aKbf2MzRpVhcSHM5IR-9HQuevr7H5Pbq8tfmR3t98_3n5vy6dVLqqe2scr5DYb30FjsFkqN2mg-97iyyAWH5g2rQ9cKpexjA14OM9R1y6Pgxgf1cV2ZnMjrMzk4m2fCvWS6jHTNMUEVF1Xzea55y-jNjmcw2FIfjaCNW6waU0r2WTMn_QXvWQc9ZRT-9QR_TnGNdvlISpBJUqkqJV785lZLRm6cctjbvDFCzJGX-JmWWpMw-qSr7tpeF6FPe2ueUx8FMdjem7LONLhTD353wAghmmCc</recordid><startdate>20150304</startdate><enddate>20150304</enddate><creator>Ivonin, Leonid</creator><creator>Chang, Huang-Ming</creator><creator>Díaz, Marta</creator><creator>Català, Andreu</creator><creator>Chen, Wei</creator><creator>Rauterberg, Matthias</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope><scope>XX2</scope></search><sort><creationdate>20150304</creationdate><title>Beyond cognition and affect: sensing the unconscious</title><author>Ivonin, Leonid ; Chang, Huang-Ming ; Díaz, Marta ; Català, Andreu ; Chen, Wei ; Rauterberg, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Affective Computing</topic><topic>Aplicacions de la informàtica</topic><topic>archetypes</topic><topic>Ciències de la salut</topic><topic>Classification</topic><topic>Cognition</topic><topic>Cognitive psychology</topic><topic>Computer simulation</topic><topic>Consciousness</topic><topic>Data mining</topic><topic>Disseny assistit per ordinador</topic><topic>Emocions i cognició</topic><topic>Emotions</topic><topic>Human</topic><topic>Human-computer interaction</topic><topic>Informàtica</topic><topic>Interacció persona-ordinador</topic><topic>Mathematical models</topic><topic>modelling</topic><topic>Physiological psychology</topic><topic>Physiological responses</topic><topic>Psicologia</topic><topic>Psychology</topic><topic>Salut mental</topic><topic>Statistical analysis</topic><topic>unconscious</topic><topic>User interfaces</topic><topic>Wearable computers</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivonin, Leonid</creatorcontrib><creatorcontrib>Chang, Huang-Ming</creatorcontrib><creatorcontrib>Díaz, Marta</creatorcontrib><creatorcontrib>Català, Andreu</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><collection>Recercat</collection><jtitle>Behaviour &amp; information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivonin, Leonid</au><au>Chang, Huang-Ming</au><au>Díaz, Marta</au><au>Català, Andreu</au><au>Chen, Wei</au><au>Rauterberg, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond cognition and affect: sensing the unconscious</atitle><jtitle>Behaviour &amp; information technology</jtitle><date>2015-03-04</date><risdate>2015</risdate><volume>34</volume><issue>3</issue><spage>220</spage><epage>238</epage><pages>220-238</pages><issn>0144-929X</issn><eissn>1362-3001</eissn><abstract>In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0144929X.2014.912353</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-929X
ispartof Behaviour & information technology, 2015-03, Vol.34 (3), p.220-238
issn 0144-929X
1362-3001
language eng
recordid cdi_proquest_miscellaneous_1669895265
source Business Source Complete; Recercat
subjects Affective Computing
Aplicacions de la informàtica
archetypes
Ciències de la salut
Classification
Cognition
Cognitive psychology
Computer simulation
Consciousness
Data mining
Disseny assistit per ordinador
Emocions i cognició
Emotions
Human
Human-computer interaction
Informàtica
Interacció persona-ordinador
Mathematical models
modelling
Physiological psychology
Physiological responses
Psicologia
Psychology
Salut mental
Statistical analysis
unconscious
User interfaces
Wearable computers
Àrees temàtiques de la UPC
title Beyond cognition and affect: sensing the unconscious
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20cognition%20and%20affect:%20sensing%20the%20unconscious&rft.jtitle=Behaviour%20&%20information%20technology&rft.au=Ivonin,%20Leonid&rft.date=2015-03-04&rft.volume=34&rft.issue=3&rft.spage=220&rft.epage=238&rft.pages=220-238&rft.issn=0144-929X&rft.eissn=1362-3001&rft_id=info:doi/10.1080/0144929X.2014.912353&rft_dat=%3Cproquest_cross%3E1669895265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651564056&rft_id=info:pmid/&rfr_iscdi=true