Beyond cognition and affect: sensing the unconscious
In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of co...
Gespeichert in:
Veröffentlicht in: | Behaviour & information technology 2015-03, Vol.34 (3), p.220-238 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | 3 |
container_start_page | 220 |
container_title | Behaviour & information technology |
container_volume | 34 |
creator | Ivonin, Leonid Chang, Huang-Ming Díaz, Marta Català, Andreu Chen, Wei Rauterberg, Matthias |
description | In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models. |
doi_str_mv | 10.1080/0144929X.2014.912353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669895265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669895265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJIZuPf5CDoZdevNXoy1YvJVmSthDIpYHchCKPUgWvlEo2Yf99ZDalkEOoQGhGPO_wDi8hZ0DXQHv6hYIQmum7NavVWgPjkn8gK-CKtZxSOCCrBWkX5pAclfJIKRWqZysiLnCX4tC49BDDFFJsbO2s9-imr03BWEJ8aKbf2MzRpVhcSHM5IR-9HQuevr7H5Pbq8tfmR3t98_3n5vy6dVLqqe2scr5DYb30FjsFkqN2mg-97iyyAWH5g2rQ9cKpexjA14OM9R1y6Pgxgf1cV2ZnMjrMzk4m2fCvWS6jHTNMUEVF1Xzea55y-jNjmcw2FIfjaCNW6waU0r2WTMn_QXvWQc9ZRT-9QR_TnGNdvlISpBJUqkqJV785lZLRm6cctjbvDFCzJGX-JmWWpMw-qSr7tpeF6FPe2ueUx8FMdjem7LONLhTD353wAghmmCc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651564056</pqid></control><display><type>article</type><title>Beyond cognition and affect: sensing the unconscious</title><source>Business Source Complete</source><source>Recercat</source><creator>Ivonin, Leonid ; Chang, Huang-Ming ; Díaz, Marta ; Català, Andreu ; Chen, Wei ; Rauterberg, Matthias</creator><creatorcontrib>Ivonin, Leonid ; Chang, Huang-Ming ; Díaz, Marta ; Català, Andreu ; Chen, Wei ; Rauterberg, Matthias</creatorcontrib><description>In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.</description><identifier>ISSN: 0144-929X</identifier><identifier>EISSN: 1362-3001</identifier><identifier>DOI: 10.1080/0144929X.2014.912353</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Affective Computing ; Aplicacions de la informàtica ; archetypes ; Ciències de la salut ; Classification ; Cognition ; Cognitive psychology ; Computer simulation ; Consciousness ; Data mining ; Disseny assistit per ordinador ; Emocions i cognició ; Emotions ; Human ; Human-computer interaction ; Informàtica ; Interacció persona-ordinador ; Mathematical models ; modelling ; Physiological psychology ; Physiological responses ; Psicologia ; Psychology ; Salut mental ; Statistical analysis ; unconscious ; User interfaces ; Wearable computers ; Àrees temàtiques de la UPC</subject><ispartof>Behaviour & information technology, 2015-03, Vol.34 (3), p.220-238</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</citedby><cites>FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,26955,27905,27906</link.rule.ids></links><search><creatorcontrib>Ivonin, Leonid</creatorcontrib><creatorcontrib>Chang, Huang-Ming</creatorcontrib><creatorcontrib>Díaz, Marta</creatorcontrib><creatorcontrib>Català, Andreu</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><title>Beyond cognition and affect: sensing the unconscious</title><title>Behaviour & information technology</title><description>In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.</description><subject>Affective Computing</subject><subject>Aplicacions de la informàtica</subject><subject>archetypes</subject><subject>Ciències de la salut</subject><subject>Classification</subject><subject>Cognition</subject><subject>Cognitive psychology</subject><subject>Computer simulation</subject><subject>Consciousness</subject><subject>Data mining</subject><subject>Disseny assistit per ordinador</subject><subject>Emocions i cognició</subject><subject>Emotions</subject><subject>Human</subject><subject>Human-computer interaction</subject><subject>Informàtica</subject><subject>Interacció persona-ordinador</subject><subject>Mathematical models</subject><subject>modelling</subject><subject>Physiological psychology</subject><subject>Physiological responses</subject><subject>Psicologia</subject><subject>Psychology</subject><subject>Salut mental</subject><subject>Statistical analysis</subject><subject>unconscious</subject><subject>User interfaces</subject><subject>Wearable computers</subject><subject>Àrees temàtiques de la UPC</subject><issn>0144-929X</issn><issn>1362-3001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkU1r3DAQhkVJIZuPf5CDoZdevNXoy1YvJVmSthDIpYHchCKPUgWvlEo2Yf99ZDalkEOoQGhGPO_wDi8hZ0DXQHv6hYIQmum7NavVWgPjkn8gK-CKtZxSOCCrBWkX5pAclfJIKRWqZysiLnCX4tC49BDDFFJsbO2s9-imr03BWEJ8aKbf2MzRpVhcSHM5IR-9HQuevr7H5Pbq8tfmR3t98_3n5vy6dVLqqe2scr5DYb30FjsFkqN2mg-97iyyAWH5g2rQ9cKpexjA14OM9R1y6Pgxgf1cV2ZnMjrMzk4m2fCvWS6jHTNMUEVF1Xzea55y-jNjmcw2FIfjaCNW6waU0r2WTMn_QXvWQc9ZRT-9QR_TnGNdvlISpBJUqkqJV785lZLRm6cctjbvDFCzJGX-JmWWpMw-qSr7tpeF6FPe2ueUx8FMdjem7LONLhTD353wAghmmCc</recordid><startdate>20150304</startdate><enddate>20150304</enddate><creator>Ivonin, Leonid</creator><creator>Chang, Huang-Ming</creator><creator>Díaz, Marta</creator><creator>Català, Andreu</creator><creator>Chen, Wei</creator><creator>Rauterberg, Matthias</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope><scope>XX2</scope></search><sort><creationdate>20150304</creationdate><title>Beyond cognition and affect: sensing the unconscious</title><author>Ivonin, Leonid ; Chang, Huang-Ming ; Díaz, Marta ; Català, Andreu ; Chen, Wei ; Rauterberg, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-7a6cf7e4af5fae76153e9c93d897ae2de176151001c84c6b1d1ffffe2287e3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Affective Computing</topic><topic>Aplicacions de la informàtica</topic><topic>archetypes</topic><topic>Ciències de la salut</topic><topic>Classification</topic><topic>Cognition</topic><topic>Cognitive psychology</topic><topic>Computer simulation</topic><topic>Consciousness</topic><topic>Data mining</topic><topic>Disseny assistit per ordinador</topic><topic>Emocions i cognició</topic><topic>Emotions</topic><topic>Human</topic><topic>Human-computer interaction</topic><topic>Informàtica</topic><topic>Interacció persona-ordinador</topic><topic>Mathematical models</topic><topic>modelling</topic><topic>Physiological psychology</topic><topic>Physiological responses</topic><topic>Psicologia</topic><topic>Psychology</topic><topic>Salut mental</topic><topic>Statistical analysis</topic><topic>unconscious</topic><topic>User interfaces</topic><topic>Wearable computers</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivonin, Leonid</creatorcontrib><creatorcontrib>Chang, Huang-Ming</creatorcontrib><creatorcontrib>Díaz, Marta</creatorcontrib><creatorcontrib>Català, Andreu</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Rauterberg, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><collection>Recercat</collection><jtitle>Behaviour & information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivonin, Leonid</au><au>Chang, Huang-Ming</au><au>Díaz, Marta</au><au>Català, Andreu</au><au>Chen, Wei</au><au>Rauterberg, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond cognition and affect: sensing the unconscious</atitle><jtitle>Behaviour & information technology</jtitle><date>2015-03-04</date><risdate>2015</risdate><volume>34</volume><issue>3</issue><spage>220</spage><epage>238</epage><pages>220-238</pages><issn>0144-929X</issn><eissn>1362-3001</eissn><abstract>In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/0144929X.2014.912353</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-929X |
ispartof | Behaviour & information technology, 2015-03, Vol.34 (3), p.220-238 |
issn | 0144-929X 1362-3001 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669895265 |
source | Business Source Complete; Recercat |
subjects | Affective Computing Aplicacions de la informàtica archetypes Ciències de la salut Classification Cognition Cognitive psychology Computer simulation Consciousness Data mining Disseny assistit per ordinador Emocions i cognició Emotions Human Human-computer interaction Informàtica Interacció persona-ordinador Mathematical models modelling Physiological psychology Physiological responses Psicologia Psychology Salut mental Statistical analysis unconscious User interfaces Wearable computers Àrees temàtiques de la UPC |
title | Beyond cognition and affect: sensing the unconscious |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20cognition%20and%20affect:%20sensing%20the%20unconscious&rft.jtitle=Behaviour%20&%20information%20technology&rft.au=Ivonin,%20Leonid&rft.date=2015-03-04&rft.volume=34&rft.issue=3&rft.spage=220&rft.epage=238&rft.pages=220-238&rft.issn=0144-929X&rft.eissn=1362-3001&rft_id=info:doi/10.1080/0144929X.2014.912353&rft_dat=%3Cproquest_cross%3E1669895265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651564056&rft_id=info:pmid/&rfr_iscdi=true |