Ultrafast plasmonic nanowire lasers near the surface plasmon frequency
Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wav...
Gespeichert in:
Veröffentlicht in: | Nature physics 2014-11, Vol.10 (11), p.870-876 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 876 |
---|---|
container_issue | 11 |
container_start_page | 870 |
container_title | Nature physics |
container_volume | 10 |
creator | Sidiropoulos, Themistoklis P. H. Röder, Robert Geburt, Sebastian Hess, Ortwin Maier, Stefan A. Ronning, Carsten Oulton, Rupert F. |
description | Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena.
Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency. |
doi_str_mv | 10.1038/nphys3103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669891515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669891515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</originalsourceid><addsrcrecordid>eNpl0N9LwzAQB_AgCs7pg_9BwBcVqknzo8mjjE2FgS_uuaTpxXV0aU1aZP-9kekQfbrj-PC94xC6pOSOEqbufb_eRZbaIzShBRdZzhU9PvQFO0VnMW4I4bmkbIIWq3YIxpk44L41cdv5xmJvfPfRBMBpAiFiDybgYQ04jsEZCz8UuwDvI3i7O0cnzrQRLr7rFK0W89fZU7Z8eXyePSwzy7UcMq60dlLwSmihWCU4YylP0VxZVhFjdS6tqTmTpABDeQ11bSsnCiZELZzJ2RRd73P70KXNcSi3TbTQtsZDN8aSSqmVpoKKRK_-0E03Bp-uS0pQnSta0KRu9sqGLsYAruxDszVhV1JSfn20PHw02du9jcn4Nwi_Ev_hT1NPeEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651928171</pqid></control><display><type>article</type><title>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sidiropoulos, Themistoklis P. H. ; Röder, Robert ; Geburt, Sebastian ; Hess, Ortwin ; Maier, Stefan A. ; Ronning, Carsten ; Oulton, Rupert F.</creator><creatorcontrib>Sidiropoulos, Themistoklis P. H. ; Röder, Robert ; Geburt, Sebastian ; Hess, Ortwin ; Maier, Stefan A. ; Ronning, Carsten ; Oulton, Rupert F.</creatorcontrib><description>Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena.
Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3103</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1093 ; 639/766/400/1021 ; 639/766/400/584 ; Amplification ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Frequencies ; Gain ; Lasers ; Mathematical and Computational Physics ; Matter & antimatter ; Molecular ; Nanowires ; Optical and Plasma Physics ; Physics ; Plasmonics ; Plasmons ; Position (location) ; Silver ; Surface chemistry ; Theoretical ; Wavelengths ; Zinc oxide</subject><ispartof>Nature physics, 2014-11, Vol.10 (11), p.870-876</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</citedby><cites>FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3103$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3103$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sidiropoulos, Themistoklis P. H.</creatorcontrib><creatorcontrib>Röder, Robert</creatorcontrib><creatorcontrib>Geburt, Sebastian</creatorcontrib><creatorcontrib>Hess, Ortwin</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Ronning, Carsten</creatorcontrib><creatorcontrib>Oulton, Rupert F.</creatorcontrib><title>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena.
Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.</description><subject>639/624/1020/1093</subject><subject>639/766/400/1021</subject><subject>639/766/400/584</subject><subject>Amplification</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Frequencies</subject><subject>Gain</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Matter & antimatter</subject><subject>Molecular</subject><subject>Nanowires</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Position (location)</subject><subject>Silver</subject><subject>Surface chemistry</subject><subject>Theoretical</subject><subject>Wavelengths</subject><subject>Zinc oxide</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0N9LwzAQB_AgCs7pg_9BwBcVqknzo8mjjE2FgS_uuaTpxXV0aU1aZP-9kekQfbrj-PC94xC6pOSOEqbufb_eRZbaIzShBRdZzhU9PvQFO0VnMW4I4bmkbIIWq3YIxpk44L41cdv5xmJvfPfRBMBpAiFiDybgYQ04jsEZCz8UuwDvI3i7O0cnzrQRLr7rFK0W89fZU7Z8eXyePSwzy7UcMq60dlLwSmihWCU4YylP0VxZVhFjdS6tqTmTpABDeQ11bSsnCiZELZzJ2RRd73P70KXNcSi3TbTQtsZDN8aSSqmVpoKKRK_-0E03Bp-uS0pQnSta0KRu9sqGLsYAruxDszVhV1JSfn20PHw02du9jcn4Nwi_Ev_hT1NPeEU</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Sidiropoulos, Themistoklis P. H.</creator><creator>Röder, Robert</creator><creator>Geburt, Sebastian</creator><creator>Hess, Ortwin</creator><creator>Maier, Stefan A.</creator><creator>Ronning, Carsten</creator><creator>Oulton, Rupert F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SP</scope></search><sort><creationdate>20141101</creationdate><title>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</title><author>Sidiropoulos, Themistoklis P. H. ; Röder, Robert ; Geburt, Sebastian ; Hess, Ortwin ; Maier, Stefan A. ; Ronning, Carsten ; Oulton, Rupert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/624/1020/1093</topic><topic>639/766/400/1021</topic><topic>639/766/400/584</topic><topic>Amplification</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Frequencies</topic><topic>Gain</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Matter & antimatter</topic><topic>Molecular</topic><topic>Nanowires</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Position (location)</topic><topic>Silver</topic><topic>Surface chemistry</topic><topic>Theoretical</topic><topic>Wavelengths</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidiropoulos, Themistoklis P. H.</creatorcontrib><creatorcontrib>Röder, Robert</creatorcontrib><creatorcontrib>Geburt, Sebastian</creatorcontrib><creatorcontrib>Hess, Ortwin</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Ronning, Carsten</creatorcontrib><creatorcontrib>Oulton, Rupert F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Electronics & Communications Abstracts</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidiropoulos, Themistoklis P. H.</au><au>Röder, Robert</au><au>Geburt, Sebastian</au><au>Hess, Ortwin</au><au>Maier, Stefan A.</au><au>Ronning, Carsten</au><au>Oulton, Rupert F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>10</volume><issue>11</issue><spage>870</spage><epage>876</epage><pages>870-876</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena.
Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3103</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2014-11, Vol.10 (11), p.870-876 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669891515 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/624/1020/1093 639/766/400/1021 639/766/400/584 Amplification Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Frequencies Gain Lasers Mathematical and Computational Physics Matter & antimatter Molecular Nanowires Optical and Plasma Physics Physics Plasmonics Plasmons Position (location) Silver Surface chemistry Theoretical Wavelengths Zinc oxide |
title | Ultrafast plasmonic nanowire lasers near the surface plasmon frequency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20plasmonic%20nanowire%20lasers%20near%20the%20surface%20plasmon%20frequency&rft.jtitle=Nature%20physics&rft.au=Sidiropoulos,%20Themistoklis%20P.%20H.&rft.date=2014-11-01&rft.volume=10&rft.issue=11&rft.spage=870&rft.epage=876&rft.pages=870-876&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3103&rft_dat=%3Cproquest_cross%3E1669891515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651928171&rft_id=info:pmid/&rfr_iscdi=true |