Ultrafast plasmonic nanowire lasers near the surface plasmon frequency

Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2014-11, Vol.10 (11), p.870-876
Hauptverfasser: Sidiropoulos, Themistoklis P. H., Röder, Robert, Geburt, Sebastian, Hess, Ortwin, Maier, Stefan A., Ronning, Carsten, Oulton, Rupert F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 876
container_issue 11
container_start_page 870
container_title Nature physics
container_volume 10
creator Sidiropoulos, Themistoklis P. H.
Röder, Robert
Geburt, Sebastian
Hess, Ortwin
Maier, Stefan A.
Ronning, Carsten
Oulton, Rupert F.
description Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena. Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.
doi_str_mv 10.1038/nphys3103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669891515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669891515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</originalsourceid><addsrcrecordid>eNpl0N9LwzAQB_AgCs7pg_9BwBcVqknzo8mjjE2FgS_uuaTpxXV0aU1aZP-9kekQfbrj-PC94xC6pOSOEqbufb_eRZbaIzShBRdZzhU9PvQFO0VnMW4I4bmkbIIWq3YIxpk44L41cdv5xmJvfPfRBMBpAiFiDybgYQ04jsEZCz8UuwDvI3i7O0cnzrQRLr7rFK0W89fZU7Z8eXyePSwzy7UcMq60dlLwSmihWCU4YylP0VxZVhFjdS6tqTmTpABDeQ11bSsnCiZELZzJ2RRd73P70KXNcSi3TbTQtsZDN8aSSqmVpoKKRK_-0E03Bp-uS0pQnSta0KRu9sqGLsYAruxDszVhV1JSfn20PHw02du9jcn4Nwi_Ev_hT1NPeEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651928171</pqid></control><display><type>article</type><title>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sidiropoulos, Themistoklis P. H. ; Röder, Robert ; Geburt, Sebastian ; Hess, Ortwin ; Maier, Stefan A. ; Ronning, Carsten ; Oulton, Rupert F.</creator><creatorcontrib>Sidiropoulos, Themistoklis P. H. ; Röder, Robert ; Geburt, Sebastian ; Hess, Ortwin ; Maier, Stefan A. ; Ronning, Carsten ; Oulton, Rupert F.</creatorcontrib><description>Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena. Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3103</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1093 ; 639/766/400/1021 ; 639/766/400/584 ; Amplification ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Frequencies ; Gain ; Lasers ; Mathematical and Computational Physics ; Matter &amp; antimatter ; Molecular ; Nanowires ; Optical and Plasma Physics ; Physics ; Plasmonics ; Plasmons ; Position (location) ; Silver ; Surface chemistry ; Theoretical ; Wavelengths ; Zinc oxide</subject><ispartof>Nature physics, 2014-11, Vol.10 (11), p.870-876</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Nov 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</citedby><cites>FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3103$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3103$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sidiropoulos, Themistoklis P. H.</creatorcontrib><creatorcontrib>Röder, Robert</creatorcontrib><creatorcontrib>Geburt, Sebastian</creatorcontrib><creatorcontrib>Hess, Ortwin</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Ronning, Carsten</creatorcontrib><creatorcontrib>Oulton, Rupert F.</creatorcontrib><title>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena. Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.</description><subject>639/624/1020/1093</subject><subject>639/766/400/1021</subject><subject>639/766/400/584</subject><subject>Amplification</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Frequencies</subject><subject>Gain</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Matter &amp; antimatter</subject><subject>Molecular</subject><subject>Nanowires</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Position (location)</subject><subject>Silver</subject><subject>Surface chemistry</subject><subject>Theoretical</subject><subject>Wavelengths</subject><subject>Zinc oxide</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0N9LwzAQB_AgCs7pg_9BwBcVqknzo8mjjE2FgS_uuaTpxXV0aU1aZP-9kekQfbrj-PC94xC6pOSOEqbufb_eRZbaIzShBRdZzhU9PvQFO0VnMW4I4bmkbIIWq3YIxpk44L41cdv5xmJvfPfRBMBpAiFiDybgYQ04jsEZCz8UuwDvI3i7O0cnzrQRLr7rFK0W89fZU7Z8eXyePSwzy7UcMq60dlLwSmihWCU4YylP0VxZVhFjdS6tqTmTpABDeQ11bSsnCiZELZzJ2RRd73P70KXNcSi3TbTQtsZDN8aSSqmVpoKKRK_-0E03Bp-uS0pQnSta0KRu9sqGLsYAruxDszVhV1JSfn20PHw02du9jcn4Nwi_Ev_hT1NPeEU</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Sidiropoulos, Themistoklis P. H.</creator><creator>Röder, Robert</creator><creator>Geburt, Sebastian</creator><creator>Hess, Ortwin</creator><creator>Maier, Stefan A.</creator><creator>Ronning, Carsten</creator><creator>Oulton, Rupert F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7SP</scope></search><sort><creationdate>20141101</creationdate><title>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</title><author>Sidiropoulos, Themistoklis P. H. ; Röder, Robert ; Geburt, Sebastian ; Hess, Ortwin ; Maier, Stefan A. ; Ronning, Carsten ; Oulton, Rupert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-4899f654b59583b5433fac8128c3b0ac926cad43607ea14deddcbf57355d5fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/624/1020/1093</topic><topic>639/766/400/1021</topic><topic>639/766/400/584</topic><topic>Amplification</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Frequencies</topic><topic>Gain</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Matter &amp; antimatter</topic><topic>Molecular</topic><topic>Nanowires</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Position (location)</topic><topic>Silver</topic><topic>Surface chemistry</topic><topic>Theoretical</topic><topic>Wavelengths</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidiropoulos, Themistoklis P. H.</creatorcontrib><creatorcontrib>Röder, Robert</creatorcontrib><creatorcontrib>Geburt, Sebastian</creatorcontrib><creatorcontrib>Hess, Ortwin</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Ronning, Carsten</creatorcontrib><creatorcontrib>Oulton, Rupert F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidiropoulos, Themistoklis P. H.</au><au>Röder, Robert</au><au>Geburt, Sebastian</au><au>Hess, Ortwin</au><au>Maier, Stefan A.</au><au>Ronning, Carsten</au><au>Oulton, Rupert F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast plasmonic nanowire lasers near the surface plasmon frequency</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>10</volume><issue>11</issue><spage>870</spage><epage>876</epage><pages>870-876</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena. Electron scattering limits the optical excitations produced by metal-based lasers to femtosecond timescales. But sub-picosecond pulsing can be achieved in a plasmonic nanowire laser by operating near the surface plasmon frequency.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3103</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2014-11, Vol.10 (11), p.870-876
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1669891515
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/624/1020/1093
639/766/400/1021
639/766/400/584
Amplification
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Frequencies
Gain
Lasers
Mathematical and Computational Physics
Matter & antimatter
Molecular
Nanowires
Optical and Plasma Physics
Physics
Plasmonics
Plasmons
Position (location)
Silver
Surface chemistry
Theoretical
Wavelengths
Zinc oxide
title Ultrafast plasmonic nanowire lasers near the surface plasmon frequency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20plasmonic%20nanowire%20lasers%20near%20the%20surface%20plasmon%20frequency&rft.jtitle=Nature%20physics&rft.au=Sidiropoulos,%20Themistoklis%20P.%20H.&rft.date=2014-11-01&rft.volume=10&rft.issue=11&rft.spage=870&rft.epage=876&rft.pages=870-876&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3103&rft_dat=%3Cproquest_cross%3E1669891515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651928171&rft_id=info:pmid/&rfr_iscdi=true