A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components
This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid...
Gespeichert in:
Veröffentlicht in: | Archive of Mechanical Engineering 2014-08, Vol.61 (2), p.227-251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 2 |
container_start_page | 227 |
container_title | Archive of Mechanical Engineering |
container_volume | 61 |
creator | Pazouki, Arman Serban, Radu Negrut, Dan |
description | This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-grangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The two-way coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono:Fluid, is part of the Chrono project and available as an open-source software. |
doi_str_mv | 10.2478/meceng-2014-0014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669888236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_896a3cc25dfd4fd782d930b3616a2ec8</doaj_id><sourcerecordid>3463564041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-8c12cefe2b2c180d4e6ff28700951c02d6d641e02c168c394f25b83d3fa0c7793</originalsourceid><addsrcrecordid>eNpdkc1rHCEYxofSQkOae45CL71M68eMo8dlyRcEGpLmLK6-zrrM6EYdml76t9fdLaXEg8r7_HheX5-muST4K-0G8W0GA2FsKSZdi-v2rjmjDOOWCNm__-_-sbnIeYfrYpIOTJw1v1fo1o9b9ADJxTTrYACt47xfig8jWu33KWqzRSWisgX05Odl0sXHgKJD19PibfsUJ2-RDwWSNkfpIcXNBHNGP33Zokc_Vl0HW3l49VU5NogBQsmfmg9OTxku_p7nzfP11Y_1bXv__eZuvbpvTceH0gpDqAEHdEMNEdh2wJ2jYsBY9sRgarnlHQFcVS4Mk52j_UYwy5zGZhgkO2_uTr426p3aJz_r9EtF7dWxENOodCreTKCE5JoZQ3vrbOfsIKiVDG8YJ1xTMKJ6fTl51b95WSAXNftsYJp0gLhkRTiXQgjKeEU_v0F3cUmhTlopwrAkrGeVwifKpJhzAvfvgQSrQ77qlK865KsO-bI_owuZvQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613091353</pqid></control><display><type>article</type><title>A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Pazouki, Arman ; Serban, Radu ; Negrut, Dan</creator><creatorcontrib>Pazouki, Arman ; Serban, Radu ; Negrut, Dan</creatorcontrib><description>This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-grangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The two-way coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono:Fluid, is part of the Chrono project and available as an open-source software.</description><identifier>ISSN: 2300-1895</identifier><identifier>ISSN: 0004-0738</identifier><identifier>EISSN: 2300-1895</identifier><identifier>DOI: 10.2478/meceng-2014-0014</identifier><language>eng</language><publisher>Warsaw: Polish Academy of Sciences</publisher><subject>Algorithms ; Computation ; Computational fluid dynamics ; Computer programs ; Computer simulation ; flexible body dynamics ; Fluid flow ; fluid-solid interaction ; high performance computing ; Mathematical models ; Rigid-body dynamics ; smoothed particle hydrodynamics</subject><ispartof>Archive of Mechanical Engineering, 2014-08, Vol.61 (2), p.227-251</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-8c12cefe2b2c180d4e6ff28700951c02d6d641e02c168c394f25b83d3fa0c7793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27928,27929</link.rule.ids></links><search><creatorcontrib>Pazouki, Arman</creatorcontrib><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>Negrut, Dan</creatorcontrib><title>A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components</title><title>Archive of Mechanical Engineering</title><description>This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-grangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The two-way coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono:Fluid, is part of the Chrono project and available as an open-source software.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer programs</subject><subject>Computer simulation</subject><subject>flexible body dynamics</subject><subject>Fluid flow</subject><subject>fluid-solid interaction</subject><subject>high performance computing</subject><subject>Mathematical models</subject><subject>Rigid-body dynamics</subject><subject>smoothed particle hydrodynamics</subject><issn>2300-1895</issn><issn>0004-0738</issn><issn>2300-1895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1rHCEYxofSQkOae45CL71M68eMo8dlyRcEGpLmLK6-zrrM6EYdml76t9fdLaXEg8r7_HheX5-muST4K-0G8W0GA2FsKSZdi-v2rjmjDOOWCNm__-_-sbnIeYfrYpIOTJw1v1fo1o9b9ADJxTTrYACt47xfig8jWu33KWqzRSWisgX05Odl0sXHgKJD19PibfsUJ2-RDwWSNkfpIcXNBHNGP33Zokc_Vl0HW3l49VU5NogBQsmfmg9OTxku_p7nzfP11Y_1bXv__eZuvbpvTceH0gpDqAEHdEMNEdh2wJ2jYsBY9sRgarnlHQFcVS4Mk52j_UYwy5zGZhgkO2_uTr426p3aJz_r9EtF7dWxENOodCreTKCE5JoZQ3vrbOfsIKiVDG8YJ1xTMKJ6fTl51b95WSAXNftsYJp0gLhkRTiXQgjKeEU_v0F3cUmhTlopwrAkrGeVwifKpJhzAvfvgQSrQ77qlK865KsO-bI_owuZvQ</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Pazouki, Arman</creator><creator>Serban, Radu</creator><creator>Negrut, Dan</creator><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140815</creationdate><title>A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components</title><author>Pazouki, Arman ; Serban, Radu ; Negrut, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-8c12cefe2b2c180d4e6ff28700951c02d6d641e02c168c394f25b83d3fa0c7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer programs</topic><topic>Computer simulation</topic><topic>flexible body dynamics</topic><topic>Fluid flow</topic><topic>fluid-solid interaction</topic><topic>high performance computing</topic><topic>Mathematical models</topic><topic>Rigid-body dynamics</topic><topic>smoothed particle hydrodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pazouki, Arman</creatorcontrib><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>Negrut, Dan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Archive of Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pazouki, Arman</au><au>Serban, Radu</au><au>Negrut, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components</atitle><jtitle>Archive of Mechanical Engineering</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>61</volume><issue>2</issue><spage>227</spage><epage>251</epage><pages>227-251</pages><issn>2300-1895</issn><issn>0004-0738</issn><eissn>2300-1895</eissn><abstract>This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-grangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The two-way coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono:Fluid, is part of the Chrono project and available as an open-source software.</abstract><cop>Warsaw</cop><pub>Polish Academy of Sciences</pub><doi>10.2478/meceng-2014-0014</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2300-1895 |
ispartof | Archive of Mechanical Engineering, 2014-08, Vol.61 (2), p.227-251 |
issn | 2300-1895 0004-0738 2300-1895 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669888236 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Computation Computational fluid dynamics Computer programs Computer simulation flexible body dynamics Fluid flow fluid-solid interaction high performance computing Mathematical models Rigid-body dynamics smoothed particle hydrodynamics |
title | A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%20Performance%20Computing%20Approach%20to%20the%20Simulation%20of%20Fluid-Solid%20interaction%20Problems%20with%20Rigid%20and%20Flexible%20Components&rft.jtitle=Archive%20of%20Mechanical%20Engineering&rft.au=Pazouki,%20Arman&rft.date=2014-08-15&rft.volume=61&rft.issue=2&rft.spage=227&rft.epage=251&rft.pages=227-251&rft.issn=2300-1895&rft.eissn=2300-1895&rft_id=info:doi/10.2478/meceng-2014-0014&rft_dat=%3Cproquest_doaj_%3E3463564041%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613091353&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_896a3cc25dfd4fd782d930b3616a2ec8&rfr_iscdi=true |