Robust model predictive control for heat exchanger network

Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2014-12, Vol.73 (1), p.924-930
Hauptverfasser: Bakošová, Monika, Oravec, Juraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 930
container_issue 1
container_start_page 924
container_title Applied thermal engineering
container_volume 73
creator Bakošová, Monika
Oravec, Juraj
description Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. •The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption.
doi_str_mv 10.1016/j.applthermaleng.2014.08.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669881966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431114006851</els_id><sourcerecordid>1669881966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhnNQsFbfYQ8KXromm2yaiBcpVoWCIHoO2eyk3bq7WZO06tub0iJ48zQwfPPPzIfQBcE5wYRfr3M9DG1cge90C_0yLzBhORY5LugRGhFaygmjhJyg0xDWGJNCTNkI3by4ahNi1rka2mzwUDcmNlvIjOujd21mnc9WoGMGX2al-yX4rIf46fz7GTq2ug1wfqhj9Da_f509ThbPD0-zu8XEUEnjhBMwzAoJhBelJZgyKyWvRM0xo7iiNZlaYhivbG0oLq2pqtQsGTOylNYyOkZX-9zBu48NhKi6JhhoW92D2wRFOJdCEMl5Qm_3qPEuBA9WDb7ptP9WBKudJrVWfzWpnSaFhUqa0vjlYZMORrfW69404TejEOlwzGXi5nsO0tvbBrwKpoHeJHkeTFS1a_638Aeq5ok5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669881966</pqid></control><display><type>article</type><title>Robust model predictive control for heat exchanger network</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Bakošová, Monika ; Oravec, Juraj</creator><creatorcontrib>Bakošová, Monika ; Oravec, Juraj</creatorcontrib><description>Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. •The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2014.08.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Consumption ; Control systems ; Devices using thermal energy ; Energy ; Energy saving ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchanger ; Heat exchangers ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Linear matrix inequalities ; Mathematical models ; Matlab ; Networks ; Optimization ; Predictive control ; Robust model-based predictive control ; Theoretical studies. Data and constants. Metering ; Uncertain system</subject><ispartof>Applied thermal engineering, 2014-12, Vol.73 (1), p.924-930</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43</citedby><cites>FETCH-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2014.08.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28996069$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bakošová, Monika</creatorcontrib><creatorcontrib>Oravec, Juraj</creatorcontrib><title>Robust model predictive control for heat exchanger network</title><title>Applied thermal engineering</title><description>Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. •The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption.</description><subject>Applied sciences</subject><subject>Consumption</subject><subject>Control systems</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy saving</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchanger</subject><subject>Heat exchangers</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Linear matrix inequalities</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Networks</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Robust model-based predictive control</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Uncertain system</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhnNQsFbfYQ8KXromm2yaiBcpVoWCIHoO2eyk3bq7WZO06tub0iJ48zQwfPPPzIfQBcE5wYRfr3M9DG1cge90C_0yLzBhORY5LugRGhFaygmjhJyg0xDWGJNCTNkI3by4ahNi1rka2mzwUDcmNlvIjOujd21mnc9WoGMGX2al-yX4rIf46fz7GTq2ug1wfqhj9Da_f509ThbPD0-zu8XEUEnjhBMwzAoJhBelJZgyKyWvRM0xo7iiNZlaYhivbG0oLq2pqtQsGTOylNYyOkZX-9zBu48NhKi6JhhoW92D2wRFOJdCEMl5Qm_3qPEuBA9WDb7ptP9WBKudJrVWfzWpnSaFhUqa0vjlYZMORrfW69404TejEOlwzGXi5nsO0tvbBrwKpoHeJHkeTFS1a_638Aeq5ok5</recordid><startdate>20141205</startdate><enddate>20141205</enddate><creator>Bakošová, Monika</creator><creator>Oravec, Juraj</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20141205</creationdate><title>Robust model predictive control for heat exchanger network</title><author>Bakošová, Monika ; Oravec, Juraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-61ec4f89e1625f1034f996b8d60430b3d17f1c46bfdc305fcbbb3d544c959ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Consumption</topic><topic>Control systems</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy saving</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchanger</topic><topic>Heat exchangers</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Linear matrix inequalities</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Networks</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Robust model-based predictive control</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Uncertain system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakošová, Monika</creatorcontrib><creatorcontrib>Oravec, Juraj</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakošová, Monika</au><au>Oravec, Juraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust model predictive control for heat exchanger network</atitle><jtitle>Applied thermal engineering</jtitle><date>2014-12-05</date><risdate>2014</risdate><volume>73</volume><issue>1</issue><spage>924</spage><epage>930</epage><pages>924-930</pages><issn>1359-4311</issn><abstract>Optimal operation of heat exchangers represents a challenging task from the control viewpoint, due to the presence of system nonlinearities, varying process parameters, internal and external disturbances and measurement noise. Various robust control strategies were developed to overcome all these problems. The robust model predictive control (RMPC) represents one of suitable approaches. It enables to design effective control algorithms for optimization of the control performance subject to the process uncertainties and the input and output constraints. The possibility to implement the RMPC for control of a heat exchanger network is investigated in this paper, where three counter-current heat exchangers with uncertain parameters connected in series represent the controlled process. The efficiency of the advanced RMPC algorithm was verified by simulation experiments realized in the MATLAB/Simulink environment. The results confirmed that using the RMPC for the controlled process modelled as a system with uncertain parameters led to less consumption of cooling medium compared with the consumption achieved by using the optimal linear quadratic (LQ) control. •The robust and the optimal controllers control the heat exchanger network.•The robust model predictive controller is a solution of linear matrix inequalities.•Robust control assures smaller offsets and lower coolant consumption.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2014.08.023</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2014-12, Vol.73 (1), p.924-930
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1669881966
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Consumption
Control systems
Devices using thermal energy
Energy
Energy saving
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchanger
Heat exchangers
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Linear matrix inequalities
Mathematical models
Matlab
Networks
Optimization
Predictive control
Robust model-based predictive control
Theoretical studies. Data and constants. Metering
Uncertain system
title Robust model predictive control for heat exchanger network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20model%20predictive%20control%20for%20heat%20exchanger%20network&rft.jtitle=Applied%20thermal%20engineering&rft.au=Bako%C5%A1ov%C3%A1,%20Monika&rft.date=2014-12-05&rft.volume=73&rft.issue=1&rft.spage=924&rft.epage=930&rft.pages=924-930&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2014.08.023&rft_dat=%3Cproquest_cross%3E1669881966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669881966&rft_id=info:pmid/&rft_els_id=S1359431114006851&rfr_iscdi=true