The 3R polymorph of CaSi sub(2)

The Zintl phase CaSi sub(2) commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA'BB'CC' fashion. In this study we show that sintering of CaSi sub(2) in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 degree C transforms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2015-02, Vol.222, p.18-24
Hauptverfasser: Nedumkandathil, Reji, Benson, Daryn E, Grins, Jekabs, Spektor, Kristina, Haeussermann, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 18
container_title Journal of solid state chemistry
container_volume 222
creator Nedumkandathil, Reji
Benson, Daryn E
Grins, Jekabs
Spektor, Kristina
Haeussermann, Ulrich
description The Zintl phase CaSi sub(2) commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA'BB'CC' fashion. In this study we show that sintering of CaSi sub(2) in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 degree C transforms 6R-CaSi sub(2) quantitatively into 3R-CaSi sub(2). In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi sub(2). First principles density functional calculations reveal that 6R and 3R-CaSi sub(2) are energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi sub(2) stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi sub(2) should revert to 6R at elevated temperatures, which however is not observed up to 800 degree C. 3R-CaSi sub(2) may be stabilized by small amounts of incorporated hydrogen and/or defects. The common 6R form of CaSi sub(2) can be transformed quantitatively into 3R-CaSi sub(2) upon sintering in a hydrogen atmosphere.
doi_str_mv 10.1016/j.jssc.2014.10.033
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669878692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669878692</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16698786923</originalsourceid><addsrcrecordid>eNqVyr0OgjAUQOE7aCL-vICLHXGg3rZQYSYaZ2UnSEqAFFu5Mvj2OvgCTif5cgC2ArlAoQ8974lqLlHEX-Co1AwCRCmjOMn0ApZEPaIQSRoHsCtaw9SVeWffgxt9y1zD8urWMZruodyvYd5Ulszm1xWE51ORXyI_uudk6FUOHdXG2uph3ESl0DpLj6nOpPpj_QDxszUC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669878692</pqid></control><display><type>article</type><title>The 3R polymorph of CaSi sub(2)</title><source>Elsevier ScienceDirect Journals</source><creator>Nedumkandathil, Reji ; Benson, Daryn E ; Grins, Jekabs ; Spektor, Kristina ; Haeussermann, Ulrich</creator><creatorcontrib>Nedumkandathil, Reji ; Benson, Daryn E ; Grins, Jekabs ; Spektor, Kristina ; Haeussermann, Ulrich</creatorcontrib><description>The Zintl phase CaSi sub(2) commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA'BB'CC' fashion. In this study we show that sintering of CaSi sub(2) in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 degree C transforms 6R-CaSi sub(2) quantitatively into 3R-CaSi sub(2). In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi sub(2). First principles density functional calculations reveal that 6R and 3R-CaSi sub(2) are energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi sub(2) stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi sub(2) should revert to 6R at elevated temperatures, which however is not observed up to 800 degree C. 3R-CaSi sub(2) may be stabilized by small amounts of incorporated hydrogen and/or defects. The common 6R form of CaSi sub(2) can be transformed quantitatively into 3R-CaSi sub(2) upon sintering in a hydrogen atmosphere.</description><identifier>ISSN: 0022-4596</identifier><identifier>DOI: 10.1016/j.jssc.2014.10.033</identifier><language>eng</language><subject>Atmospheres ; Atomic structure ; Density ; Entropy ; Hexagons ; Mathematical analysis ; Silicon ; Sintering ; Transforms</subject><ispartof>Journal of solid state chemistry, 2015-02, Vol.222, p.18-24</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Nedumkandathil, Reji</creatorcontrib><creatorcontrib>Benson, Daryn E</creatorcontrib><creatorcontrib>Grins, Jekabs</creatorcontrib><creatorcontrib>Spektor, Kristina</creatorcontrib><creatorcontrib>Haeussermann, Ulrich</creatorcontrib><title>The 3R polymorph of CaSi sub(2)</title><title>Journal of solid state chemistry</title><description>The Zintl phase CaSi sub(2) commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA'BB'CC' fashion. In this study we show that sintering of CaSi sub(2) in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 degree C transforms 6R-CaSi sub(2) quantitatively into 3R-CaSi sub(2). In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi sub(2). First principles density functional calculations reveal that 6R and 3R-CaSi sub(2) are energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi sub(2) stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi sub(2) should revert to 6R at elevated temperatures, which however is not observed up to 800 degree C. 3R-CaSi sub(2) may be stabilized by small amounts of incorporated hydrogen and/or defects. The common 6R form of CaSi sub(2) can be transformed quantitatively into 3R-CaSi sub(2) upon sintering in a hydrogen atmosphere.</description><subject>Atmospheres</subject><subject>Atomic structure</subject><subject>Density</subject><subject>Entropy</subject><subject>Hexagons</subject><subject>Mathematical analysis</subject><subject>Silicon</subject><subject>Sintering</subject><subject>Transforms</subject><issn>0022-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVyr0OgjAUQOE7aCL-vICLHXGg3rZQYSYaZ2UnSEqAFFu5Mvj2OvgCTif5cgC2ArlAoQ8974lqLlHEX-Co1AwCRCmjOMn0ApZEPaIQSRoHsCtaw9SVeWffgxt9y1zD8urWMZruodyvYd5Ulszm1xWE51ORXyI_uudk6FUOHdXG2uph3ESl0DpLj6nOpPpj_QDxszUC</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Nedumkandathil, Reji</creator><creator>Benson, Daryn E</creator><creator>Grins, Jekabs</creator><creator>Spektor, Kristina</creator><creator>Haeussermann, Ulrich</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150201</creationdate><title>The 3R polymorph of CaSi sub(2)</title><author>Nedumkandathil, Reji ; Benson, Daryn E ; Grins, Jekabs ; Spektor, Kristina ; Haeussermann, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16698786923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheres</topic><topic>Atomic structure</topic><topic>Density</topic><topic>Entropy</topic><topic>Hexagons</topic><topic>Mathematical analysis</topic><topic>Silicon</topic><topic>Sintering</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nedumkandathil, Reji</creatorcontrib><creatorcontrib>Benson, Daryn E</creatorcontrib><creatorcontrib>Grins, Jekabs</creatorcontrib><creatorcontrib>Spektor, Kristina</creatorcontrib><creatorcontrib>Haeussermann, Ulrich</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nedumkandathil, Reji</au><au>Benson, Daryn E</au><au>Grins, Jekabs</au><au>Spektor, Kristina</au><au>Haeussermann, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 3R polymorph of CaSi sub(2)</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>222</volume><spage>18</spage><epage>24</epage><pages>18-24</pages><issn>0022-4596</issn><abstract>The Zintl phase CaSi sub(2) commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA'BB'CC' fashion. In this study we show that sintering of CaSi sub(2) in a hydrogen atmosphere (30 bar) at temperatures between 200 and 700 degree C transforms 6R-CaSi sub(2) quantitatively into 3R-CaSi sub(2). In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi sub(2). First principles density functional calculations reveal that 6R and 3R-CaSi sub(2) are energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi sub(2) stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi sub(2) should revert to 6R at elevated temperatures, which however is not observed up to 800 degree C. 3R-CaSi sub(2) may be stabilized by small amounts of incorporated hydrogen and/or defects. The common 6R form of CaSi sub(2) can be transformed quantitatively into 3R-CaSi sub(2) upon sintering in a hydrogen atmosphere.</abstract><doi>10.1016/j.jssc.2014.10.033</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-4596
ispartof Journal of solid state chemistry, 2015-02, Vol.222, p.18-24
issn 0022-4596
language eng
recordid cdi_proquest_miscellaneous_1669878692
source Elsevier ScienceDirect Journals
subjects Atmospheres
Atomic structure
Density
Entropy
Hexagons
Mathematical analysis
Silicon
Sintering
Transforms
title The 3R polymorph of CaSi sub(2)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%203R%20polymorph%20of%20CaSi%20sub(2)&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Nedumkandathil,%20Reji&rft.date=2015-02-01&rft.volume=222&rft.spage=18&rft.epage=24&rft.pages=18-24&rft.issn=0022-4596&rft_id=info:doi/10.1016/j.jssc.2014.10.033&rft_dat=%3Cproquest%3E1669878692%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669878692&rft_id=info:pmid/&rfr_iscdi=true