PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION

Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information systems and communications 2012-01, Vol.3 (1), p.295-295
Hauptverfasser: Natesan, P, Balasubramanie, P, Gowrison, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 1
container_start_page 295
container_title Journal of information systems and communications
container_volume 3
creator Natesan, P
Balasubramanie, P
Gowrison, G
description Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669876941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669876941</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16698769413</originalsourceid><addsrcrecordid>eNqVi0ELgjAYhkcQJOV_2LGLoGhTj3N-0jA32RZ2EwmDwrJa_v889Ad6Lu9zeJ8Fcvw0Jl4S7_wVcq29-TPED-MocdCpBlVIVVHBADNZ1VRxLQWWBaY5zaTUBmdUQ44boCVmB6o1LzgojbnAAkwjVTmrUUfN5y4HA8zMtkHLSzfY3v3tGm0LMGzvPd_ja-rtp71f7bkfhu7Rj5NtA0LSJCZpFIR_XL-Z7z2t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669876941</pqid></control><display><type>article</type><title>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Natesan, P ; Balasubramanie, P ; Gowrison, G</creator><creatorcontrib>Natesan, P ; Balasubramanie, P ; Gowrison, G</creatorcontrib><description>Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system.</description><identifier>EISSN: 0976-8750</identifier><language>eng</language><subject>Algorithms ; Bayesian analysis ; Classification ; Classifiers ; Computer information security ; Intrusion ; Machine learning ; Networks</subject><ispartof>Journal of information systems and communications, 2012-01, Vol.3 (1), p.295-295</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Natesan, P</creatorcontrib><creatorcontrib>Balasubramanie, P</creatorcontrib><creatorcontrib>Gowrison, G</creatorcontrib><title>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</title><title>Journal of information systems and communications</title><description>Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer information security</subject><subject>Intrusion</subject><subject>Machine learning</subject><subject>Networks</subject><issn>0976-8750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVi0ELgjAYhkcQJOV_2LGLoGhTj3N-0jA32RZ2EwmDwrJa_v889Ad6Lu9zeJ8Fcvw0Jl4S7_wVcq29-TPED-MocdCpBlVIVVHBADNZ1VRxLQWWBaY5zaTUBmdUQ44boCVmB6o1LzgojbnAAkwjVTmrUUfN5y4HA8zMtkHLSzfY3v3tGm0LMGzvPd_ja-rtp71f7bkfhu7Rj5NtA0LSJCZpFIR_XL-Z7z2t</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Natesan, P</creator><creator>Balasubramanie, P</creator><creator>Gowrison, G</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</title><author>Natesan, P ; Balasubramanie, P ; Gowrison, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16698769413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer information security</topic><topic>Intrusion</topic><topic>Machine learning</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natesan, P</creatorcontrib><creatorcontrib>Balasubramanie, P</creatorcontrib><creatorcontrib>Gowrison, G</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information systems and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natesan, P</au><au>Balasubramanie, P</au><au>Gowrison, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</atitle><jtitle>Journal of information systems and communications</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>295</spage><epage>295</epage><pages>295-295</pages><eissn>0976-8750</eissn><abstract>Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system.</abstract></addata></record>
fulltext fulltext
identifier EISSN: 0976-8750
ispartof Journal of information systems and communications, 2012-01, Vol.3 (1), p.295-295
issn 0976-8750
language eng
recordid cdi_proquest_miscellaneous_1669876941
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Bayesian analysis
Classification
Classifiers
Computer information security
Intrusion
Machine learning
Networks
title PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PERFORMANCE%20COMPARISON%20OF%20ADABOOST%20BASED%20WEAK%20CLASSIFIERS%20IN%20NETWORK%20INTRUSION%20DETECTION&rft.jtitle=Journal%20of%20information%20systems%20and%20communications&rft.au=Natesan,%20P&rft.date=2012-01-01&rft.volume=3&rft.issue=1&rft.spage=295&rft.epage=295&rft.pages=295-295&rft.eissn=0976-8750&rft_id=info:doi/&rft_dat=%3Cproquest%3E1669876941%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669876941&rft_id=info:pmid/&rfr_iscdi=true