PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION
Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this al...
Gespeichert in:
Veröffentlicht in: | Journal of information systems and communications 2012-01, Vol.3 (1), p.295-295 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 1 |
container_start_page | 295 |
container_title | Journal of information systems and communications |
container_volume | 3 |
creator | Natesan, P Balasubramanie, P Gowrison, G |
description | Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669876941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669876941</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16698769413</originalsourceid><addsrcrecordid>eNqVi0ELgjAYhkcQJOV_2LGLoGhTj3N-0jA32RZ2EwmDwrJa_v889Ad6Lu9zeJ8Fcvw0Jl4S7_wVcq29-TPED-MocdCpBlVIVVHBADNZ1VRxLQWWBaY5zaTUBmdUQ44boCVmB6o1LzgojbnAAkwjVTmrUUfN5y4HA8zMtkHLSzfY3v3tGm0LMGzvPd_ja-rtp71f7bkfhu7Rj5NtA0LSJCZpFIR_XL-Z7z2t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669876941</pqid></control><display><type>article</type><title>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Natesan, P ; Balasubramanie, P ; Gowrison, G</creator><creatorcontrib>Natesan, P ; Balasubramanie, P ; Gowrison, G</creatorcontrib><description>Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system.</description><identifier>EISSN: 0976-8750</identifier><language>eng</language><subject>Algorithms ; Bayesian analysis ; Classification ; Classifiers ; Computer information security ; Intrusion ; Machine learning ; Networks</subject><ispartof>Journal of information systems and communications, 2012-01, Vol.3 (1), p.295-295</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Natesan, P</creatorcontrib><creatorcontrib>Balasubramanie, P</creatorcontrib><creatorcontrib>Gowrison, G</creatorcontrib><title>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</title><title>Journal of information systems and communications</title><description>Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer information security</subject><subject>Intrusion</subject><subject>Machine learning</subject><subject>Networks</subject><issn>0976-8750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVi0ELgjAYhkcQJOV_2LGLoGhTj3N-0jA32RZ2EwmDwrJa_v889Ad6Lu9zeJ8Fcvw0Jl4S7_wVcq29-TPED-MocdCpBlVIVVHBADNZ1VRxLQWWBaY5zaTUBmdUQ44boCVmB6o1LzgojbnAAkwjVTmrUUfN5y4HA8zMtkHLSzfY3v3tGm0LMGzvPd_ja-rtp71f7bkfhu7Rj5NtA0LSJCZpFIR_XL-Z7z2t</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Natesan, P</creator><creator>Balasubramanie, P</creator><creator>Gowrison, G</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</title><author>Natesan, P ; Balasubramanie, P ; Gowrison, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16698769413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer information security</topic><topic>Intrusion</topic><topic>Machine learning</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natesan, P</creatorcontrib><creatorcontrib>Balasubramanie, P</creatorcontrib><creatorcontrib>Gowrison, G</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information systems and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natesan, P</au><au>Balasubramanie, P</au><au>Gowrison, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION</atitle><jtitle>Journal of information systems and communications</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>295</spage><epage>295</epage><pages>295-295</pages><eissn>0976-8750</eissn><abstract>Recently machine learning based Intrusion Detection System (IDS) developments have been subjected to extensive researches because they can detect both misuse detection and anomaly detection. In this paper, we propose an AdaBoost based algorithm for network IDS with single weak classifier. In this algorithm, the classifiers such as Bayes Net, Naive Bayes and Decision tree are used as weak classifiers. KDDCup99 dataset is used in these experiments to demonstrate that boosting algorithm can greatly improve the classification accuracy of weak classification algorithms. Our approach achieves higher detection rate with low false alarm rates and is scalable for large datasets, resulting In an effective intrusion detection system.</abstract></addata></record> |
fulltext | fulltext |
identifier | EISSN: 0976-8750 |
ispartof | Journal of information systems and communications, 2012-01, Vol.3 (1), p.295-295 |
issn | 0976-8750 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669876941 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Bayesian analysis Classification Classifiers Computer information security Intrusion Machine learning Networks |
title | PERFORMANCE COMPARISON OF ADABOOST BASED WEAK CLASSIFIERS IN NETWORK INTRUSION DETECTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PERFORMANCE%20COMPARISON%20OF%20ADABOOST%20BASED%20WEAK%20CLASSIFIERS%20IN%20NETWORK%20INTRUSION%20DETECTION&rft.jtitle=Journal%20of%20information%20systems%20and%20communications&rft.au=Natesan,%20P&rft.date=2012-01-01&rft.volume=3&rft.issue=1&rft.spage=295&rft.epage=295&rft.pages=295-295&rft.eissn=0976-8750&rft_id=info:doi/&rft_dat=%3Cproquest%3E1669876941%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669876941&rft_id=info:pmid/&rfr_iscdi=true |