Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system
The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The r...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2014-12, Vol.73 (1), p.522-528 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 1 |
container_start_page | 522 |
container_title | Applied thermal engineering |
container_volume | 73 |
creator | Zhang, D. Wu, Q.B. Li, J.P. Kong, X.Q. |
description | The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved.
•A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2. |
doi_str_mv | 10.1016/j.applthermaleng.2014.07.077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669876160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943111400653X</els_id><sourcerecordid>1669876160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhn1IoWmS_6BDA714K8leyYZeSkjaQiCX9ixm5dGuFn-oM3Jpbv3p0bKh0FthYGB49L7oqar3Sm6UVObjcQMpjfmANMGI836jpWo30paxF9WlarZ93TZKva3eMR-lVLqz7WX15z4E9JnFEgRhoLhHgjkLfwDao4B5EJxp9XklGEUCggkzUuFnUcpEQgpLqZw9niJADJFKXo2_E8wcC8XLCFQDc-SMgzggZJHWKQl-LofpunoTYGS8ed1X1Y-H--93X-vHpy_f7j4_1r41Ta59szON1gEAECQaqQJKr7rO7Nqgg9Veb6WCXoXBGytbaYLut2qr7K5rEUJzVX045yZafq7I2U2RPY4jzLis7JQxfWeNMrKgn86op4W5WHGJ4gT07JR0J9nu6P6V7U6ynbRlbHl--9oE7GEMxaeP_DdDd31vpO4K93DmsHz7V0Ry7CMWkWeFblji_xW-APDRo40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669876160</pqid></control><display><type>article</type><title>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, D. ; Wu, Q.B. ; Li, J.P. ; Kong, X.Q.</creator><creatorcontrib>Zhang, D. ; Wu, Q.B. ; Li, J.P. ; Kong, X.Q.</creatorcontrib><description>The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved.
•A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2014.07.077</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Charge ; Coefficient of performance ; Devices using thermal energy ; Direct-expansion ; Domestic ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat pumps ; Heat transfer ; Mathematical models ; Optimization ; Pipe ; Refrigerant charge ; Refrigerants ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Solar collectors ; Solar-assisted heat pump ; Structural parameters ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2014-12, Vol.73 (1), p.522-528</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</citedby><cites>FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135943111400653X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28996028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, D.</creatorcontrib><creatorcontrib>Wu, Q.B.</creatorcontrib><creatorcontrib>Li, J.P.</creatorcontrib><creatorcontrib>Kong, X.Q.</creatorcontrib><title>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</title><title>Applied thermal engineering</title><description>The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved.
•A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2.</description><subject>Applied sciences</subject><subject>Charge</subject><subject>Coefficient of performance</subject><subject>Devices using thermal energy</subject><subject>Direct-expansion</subject><subject>Domestic</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pipe</subject><subject>Refrigerant charge</subject><subject>Refrigerants</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Solar collectors</subject><subject>Solar-assisted heat pump</subject><subject>Structural parameters</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhn1IoWmS_6BDA714K8leyYZeSkjaQiCX9ixm5dGuFn-oM3Jpbv3p0bKh0FthYGB49L7oqar3Sm6UVObjcQMpjfmANMGI836jpWo30paxF9WlarZ93TZKva3eMR-lVLqz7WX15z4E9JnFEgRhoLhHgjkLfwDao4B5EJxp9XklGEUCggkzUuFnUcpEQgpLqZw9niJADJFKXo2_E8wcC8XLCFQDc-SMgzggZJHWKQl-LofpunoTYGS8ed1X1Y-H--93X-vHpy_f7j4_1r41Ta59szON1gEAECQaqQJKr7rO7Nqgg9Veb6WCXoXBGytbaYLut2qr7K5rEUJzVX045yZafq7I2U2RPY4jzLis7JQxfWeNMrKgn86op4W5WHGJ4gT07JR0J9nu6P6V7U6ynbRlbHl--9oE7GEMxaeP_DdDd31vpO4K93DmsHz7V0Ry7CMWkWeFblji_xW-APDRo40</recordid><startdate>20141205</startdate><enddate>20141205</enddate><creator>Zhang, D.</creator><creator>Wu, Q.B.</creator><creator>Li, J.P.</creator><creator>Kong, X.Q.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20141205</creationdate><title>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</title><author>Zhang, D. ; Wu, Q.B. ; Li, J.P. ; Kong, X.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Charge</topic><topic>Coefficient of performance</topic><topic>Devices using thermal energy</topic><topic>Direct-expansion</topic><topic>Domestic</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pipe</topic><topic>Refrigerant charge</topic><topic>Refrigerants</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Solar collectors</topic><topic>Solar-assisted heat pump</topic><topic>Structural parameters</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, D.</creatorcontrib><creatorcontrib>Wu, Q.B.</creatorcontrib><creatorcontrib>Li, J.P.</creatorcontrib><creatorcontrib>Kong, X.Q.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, D.</au><au>Wu, Q.B.</au><au>Li, J.P.</au><au>Kong, X.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</atitle><jtitle>Applied thermal engineering</jtitle><date>2014-12-05</date><risdate>2014</risdate><volume>73</volume><issue>1</issue><spage>522</spage><epage>528</epage><pages>522-528</pages><issn>1359-4311</issn><abstract>The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved.
•A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2014.07.077</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2014-12, Vol.73 (1), p.522-528 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669876160 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Charge Coefficient of performance Devices using thermal energy Direct-expansion Domestic Energy Energy. Thermal use of fuels Exact sciences and technology Heat pumps Heat transfer Mathematical models Optimization Pipe Refrigerant charge Refrigerants Refrigerating engineering Refrigerating engineering. Cryogenics. Food conservation Solar collectors Solar-assisted heat pump Structural parameters Theoretical studies. Data and constants. Metering |
title | Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20refrigerant%20charge%20and%20structural%20parameters%20on%20the%20performance%20of%20a%20direct-expansion%20solar-assisted%20heat%20pump%20system&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhang,%20D.&rft.date=2014-12-05&rft.volume=73&rft.issue=1&rft.spage=522&rft.epage=528&rft.pages=522-528&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2014.07.077&rft_dat=%3Cproquest_cross%3E1669876160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669876160&rft_id=info:pmid/&rft_els_id=S135943111400653X&rfr_iscdi=true |