Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system

The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2014-12, Vol.73 (1), p.522-528
Hauptverfasser: Zhang, D., Wu, Q.B., Li, J.P., Kong, X.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 1
container_start_page 522
container_title Applied thermal engineering
container_volume 73
creator Zhang, D.
Wu, Q.B.
Li, J.P.
Kong, X.Q.
description The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved. •A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2.
doi_str_mv 10.1016/j.applthermaleng.2014.07.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669876160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943111400653X</els_id><sourcerecordid>1669876160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhn1IoWmS_6BDA714K8leyYZeSkjaQiCX9ixm5dGuFn-oM3Jpbv3p0bKh0FthYGB49L7oqar3Sm6UVObjcQMpjfmANMGI836jpWo30paxF9WlarZ93TZKva3eMR-lVLqz7WX15z4E9JnFEgRhoLhHgjkLfwDao4B5EJxp9XklGEUCggkzUuFnUcpEQgpLqZw9niJADJFKXo2_E8wcC8XLCFQDc-SMgzggZJHWKQl-LofpunoTYGS8ed1X1Y-H--93X-vHpy_f7j4_1r41Ta59szON1gEAECQaqQJKr7rO7Nqgg9Veb6WCXoXBGytbaYLut2qr7K5rEUJzVX045yZafq7I2U2RPY4jzLis7JQxfWeNMrKgn86op4W5WHGJ4gT07JR0J9nu6P6V7U6ynbRlbHl--9oE7GEMxaeP_DdDd31vpO4K93DmsHz7V0Ry7CMWkWeFblji_xW-APDRo40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669876160</pqid></control><display><type>article</type><title>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, D. ; Wu, Q.B. ; Li, J.P. ; Kong, X.Q.</creator><creatorcontrib>Zhang, D. ; Wu, Q.B. ; Li, J.P. ; Kong, X.Q.</creatorcontrib><description>The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved. •A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2014.07.077</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Charge ; Coefficient of performance ; Devices using thermal energy ; Direct-expansion ; Domestic ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat pumps ; Heat transfer ; Mathematical models ; Optimization ; Pipe ; Refrigerant charge ; Refrigerants ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Solar collectors ; Solar-assisted heat pump ; Structural parameters ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2014-12, Vol.73 (1), p.522-528</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</citedby><cites>FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135943111400653X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28996028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, D.</creatorcontrib><creatorcontrib>Wu, Q.B.</creatorcontrib><creatorcontrib>Li, J.P.</creatorcontrib><creatorcontrib>Kong, X.Q.</creatorcontrib><title>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</title><title>Applied thermal engineering</title><description>The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved. •A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2.</description><subject>Applied sciences</subject><subject>Charge</subject><subject>Coefficient of performance</subject><subject>Devices using thermal energy</subject><subject>Direct-expansion</subject><subject>Domestic</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pipe</subject><subject>Refrigerant charge</subject><subject>Refrigerants</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Solar collectors</subject><subject>Solar-assisted heat pump</subject><subject>Structural parameters</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhn1IoWmS_6BDA714K8leyYZeSkjaQiCX9ixm5dGuFn-oM3Jpbv3p0bKh0FthYGB49L7oqar3Sm6UVObjcQMpjfmANMGI836jpWo30paxF9WlarZ93TZKva3eMR-lVLqz7WX15z4E9JnFEgRhoLhHgjkLfwDao4B5EJxp9XklGEUCggkzUuFnUcpEQgpLqZw9niJADJFKXo2_E8wcC8XLCFQDc-SMgzggZJHWKQl-LofpunoTYGS8ed1X1Y-H--93X-vHpy_f7j4_1r41Ta59szON1gEAECQaqQJKr7rO7Nqgg9Veb6WCXoXBGytbaYLut2qr7K5rEUJzVX045yZafq7I2U2RPY4jzLis7JQxfWeNMrKgn86op4W5WHGJ4gT07JR0J9nu6P6V7U6ynbRlbHl--9oE7GEMxaeP_DdDd31vpO4K93DmsHz7V0Ry7CMWkWeFblji_xW-APDRo40</recordid><startdate>20141205</startdate><enddate>20141205</enddate><creator>Zhang, D.</creator><creator>Wu, Q.B.</creator><creator>Li, J.P.</creator><creator>Kong, X.Q.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20141205</creationdate><title>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</title><author>Zhang, D. ; Wu, Q.B. ; Li, J.P. ; Kong, X.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-c3b6322faaaea0e601fe0c1886b4f2f72c2501a91fdc670406f2951517b84eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Charge</topic><topic>Coefficient of performance</topic><topic>Devices using thermal energy</topic><topic>Direct-expansion</topic><topic>Domestic</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pipe</topic><topic>Refrigerant charge</topic><topic>Refrigerants</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Solar collectors</topic><topic>Solar-assisted heat pump</topic><topic>Structural parameters</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, D.</creatorcontrib><creatorcontrib>Wu, Q.B.</creatorcontrib><creatorcontrib>Li, J.P.</creatorcontrib><creatorcontrib>Kong, X.Q.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, D.</au><au>Wu, Q.B.</au><au>Li, J.P.</au><au>Kong, X.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system</atitle><jtitle>Applied thermal engineering</jtitle><date>2014-12-05</date><risdate>2014</risdate><volume>73</volume><issue>1</issue><spage>522</spage><epage>528</epage><pages>522-528</pages><issn>1359-4311</issn><abstract>The direct-expansion solar-assisted heat pump (DX-SAHP) is widely studied as a refrigeration system, which can supply hot water for domestic use during the whole year. The system refrigerant charge and structure parameters are believed to have a great effect on the cycling thermal performance. The refrigerant mass charge including two-phase and single-phase in heat exchangers and pipes is calculated with distributed and lumped parameter approach mathematical models, respectively. Based on the system simulation program, the refrigerant distribution characteristics and system performance under varied structural parameters are obtained. The mathematical calculation results show that the 70%–80% refrigerant charge exists in the condenser and collector; the optimum refrigerant charge, solar collector area, condenser pipe length and condenser internal diameter for the system are 1.65–1.75 kg, 6.0 m2, 70 m and 9 mm, respectively. In the optimum parameters, the better system performance and feasible cost can be achieved. •A method calculating the refrigerant mass charge in DX-SAHPWH system is described.•The refrigerant charge distribution characteristics is investigated.•The system performance under varied structural parameters is obtained.•The optimum refrigerant charge is 1.65–1.75 kg.•The optimum solar collector area is 6.0 m2.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2014.07.077</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2014-12, Vol.73 (1), p.522-528
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1669876160
source Elsevier ScienceDirect Journals
subjects Applied sciences
Charge
Coefficient of performance
Devices using thermal energy
Direct-expansion
Domestic
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat pumps
Heat transfer
Mathematical models
Optimization
Pipe
Refrigerant charge
Refrigerants
Refrigerating engineering
Refrigerating engineering. Cryogenics. Food conservation
Solar collectors
Solar-assisted heat pump
Structural parameters
Theoretical studies. Data and constants. Metering
title Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20refrigerant%20charge%20and%20structural%20parameters%20on%20the%20performance%20of%20a%20direct-expansion%20solar-assisted%20heat%20pump%20system&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhang,%20D.&rft.date=2014-12-05&rft.volume=73&rft.issue=1&rft.spage=522&rft.epage=528&rft.pages=522-528&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2014.07.077&rft_dat=%3Cproquest_cross%3E1669876160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669876160&rft_id=info:pmid/&rft_els_id=S135943111400653X&rfr_iscdi=true