Second-order shallow flow equation for anisotropic aquifers
•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented. Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupui...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2013-09, Vol.501, p.183-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 183 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 501 |
creator | Castro-Orgaz, O. Giraldez, J.V. Mateos, L. |
description | •We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented.
Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem. |
doi_str_mv | 10.1016/j.jhydrol.2013.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669874107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169413005891</els_id><sourcerecordid>1669874107</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-BKEXwUvrJE2TFA8i4j9Y8KCeQ0wnbEq32U26yn57u-7iVecwc3lv5s2PkHMKBQUqrtqinW-aGLqCAS0LUAVQekAmVMk6ZxLkIZkAMJZTUfNjcpJSC2OVJZ-Q61e0oW_yEBuMWZqbrgtfmds2XK3N4EOfuRAz0_sUhhiW3mZmtfYOYzolR850Cc_2c0reH-7f7p7y2cvj893tLDecqSF3FUfDSqYE1jWl0pVlhayumOWslgiKKSihwcYqwYV1jcPxjcpYCh9McllOyeVu7zKG1RrToBc-Wew602NYJ02FqJXkFP4l5XRMIWCUVjupjSGliE4vo1-YuNEU9JarbvWeq95y1aD0yHX0XexPmGRN56LprU-_ZiZlxdhP6pudDkc0nx6jTtZjb7HxEe2gm-D_uPQNK3aPmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664199160</pqid></control><display><type>article</type><title>Second-order shallow flow equation for anisotropic aquifers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Castro-Orgaz, O. ; Giraldez, J.V. ; Mateos, L.</creator><creatorcontrib>Castro-Orgaz, O. ; Giraldez, J.V. ; Mateos, L.</creatorcontrib><description>•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented.
Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2013.08.011</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anisotropy ; Approximation ; Aquifers ; Banks ; Boussinesq equations ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flow equations ; Groundwater hydraulics ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Mathematical analysis ; Media ; Second-order theory ; Shallow flows ; Unconfined flow</subject><ispartof>Journal of hydrology (Amsterdam), 2013-09, Vol.501, p.183-185</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</citedby><cites>FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169413005891$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27752247$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro-Orgaz, O.</creatorcontrib><creatorcontrib>Giraldez, J.V.</creatorcontrib><creatorcontrib>Mateos, L.</creatorcontrib><title>Second-order shallow flow equation for anisotropic aquifers</title><title>Journal of hydrology (Amsterdam)</title><description>•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented.
Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Aquifers</subject><subject>Banks</subject><subject>Boussinesq equations</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flow equations</subject><subject>Groundwater hydraulics</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Mathematical analysis</subject><subject>Media</subject><subject>Second-order theory</subject><subject>Shallow flows</subject><subject>Unconfined flow</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-BKEXwUvrJE2TFA8i4j9Y8KCeQ0wnbEq32U26yn57u-7iVecwc3lv5s2PkHMKBQUqrtqinW-aGLqCAS0LUAVQekAmVMk6ZxLkIZkAMJZTUfNjcpJSC2OVJZ-Q61e0oW_yEBuMWZqbrgtfmds2XK3N4EOfuRAz0_sUhhiW3mZmtfYOYzolR850Cc_2c0reH-7f7p7y2cvj893tLDecqSF3FUfDSqYE1jWl0pVlhayumOWslgiKKSihwcYqwYV1jcPxjcpYCh9McllOyeVu7zKG1RrToBc-Wew602NYJ02FqJXkFP4l5XRMIWCUVjupjSGliE4vo1-YuNEU9JarbvWeq95y1aD0yHX0XexPmGRN56LprU-_ZiZlxdhP6pudDkc0nx6jTtZjb7HxEe2gm-D_uPQNK3aPmA</recordid><startdate>20130925</startdate><enddate>20130925</enddate><creator>Castro-Orgaz, O.</creator><creator>Giraldez, J.V.</creator><creator>Mateos, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130925</creationdate><title>Second-order shallow flow equation for anisotropic aquifers</title><author>Castro-Orgaz, O. ; Giraldez, J.V. ; Mateos, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Aquifers</topic><topic>Banks</topic><topic>Boussinesq equations</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flow equations</topic><topic>Groundwater hydraulics</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Mathematical analysis</topic><topic>Media</topic><topic>Second-order theory</topic><topic>Shallow flows</topic><topic>Unconfined flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro-Orgaz, O.</creatorcontrib><creatorcontrib>Giraldez, J.V.</creatorcontrib><creatorcontrib>Mateos, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro-Orgaz, O.</au><au>Giraldez, J.V.</au><au>Mateos, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order shallow flow equation for anisotropic aquifers</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2013-09-25</date><risdate>2013</risdate><volume>501</volume><spage>183</spage><epage>185</epage><pages>183-185</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented.
Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2013.08.011</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2013-09, Vol.501, p.183-185 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669874107 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Anisotropy Approximation Aquifers Banks Boussinesq equations Earth sciences Earth, ocean, space Exact sciences and technology Flow equations Groundwater hydraulics Hydrogeology Hydrology Hydrology. Hydrogeology Mathematical analysis Media Second-order theory Shallow flows Unconfined flow |
title | Second-order shallow flow equation for anisotropic aquifers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20shallow%20flow%20equation%20for%20anisotropic%20aquifers&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Castro-Orgaz,%20O.&rft.date=2013-09-25&rft.volume=501&rft.spage=183&rft.epage=185&rft.pages=183-185&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2013.08.011&rft_dat=%3Cproquest_cross%3E1669874107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664199160&rft_id=info:pmid/&rft_els_id=S0022169413005891&rfr_iscdi=true |