Second-order shallow flow equation for anisotropic aquifers

•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented. Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2013-09, Vol.501, p.183-185
Hauptverfasser: Castro-Orgaz, O., Giraldez, J.V., Mateos, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue
container_start_page 183
container_title Journal of hydrology (Amsterdam)
container_volume 501
creator Castro-Orgaz, O.
Giraldez, J.V.
Mateos, L.
description •We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented. Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem.
doi_str_mv 10.1016/j.jhydrol.2013.08.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669874107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169413005891</els_id><sourcerecordid>1669874107</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-BKEXwUvrJE2TFA8i4j9Y8KCeQ0wnbEq32U26yn57u-7iVecwc3lv5s2PkHMKBQUqrtqinW-aGLqCAS0LUAVQekAmVMk6ZxLkIZkAMJZTUfNjcpJSC2OVJZ-Q61e0oW_yEBuMWZqbrgtfmds2XK3N4EOfuRAz0_sUhhiW3mZmtfYOYzolR850Cc_2c0reH-7f7p7y2cvj893tLDecqSF3FUfDSqYE1jWl0pVlhayumOWslgiKKSihwcYqwYV1jcPxjcpYCh9McllOyeVu7zKG1RrToBc-Wew602NYJ02FqJXkFP4l5XRMIWCUVjupjSGliE4vo1-YuNEU9JarbvWeq95y1aD0yHX0XexPmGRN56LprU-_ZiZlxdhP6pudDkc0nx6jTtZjb7HxEe2gm-D_uPQNK3aPmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664199160</pqid></control><display><type>article</type><title>Second-order shallow flow equation for anisotropic aquifers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Castro-Orgaz, O. ; Giraldez, J.V. ; Mateos, L.</creator><creatorcontrib>Castro-Orgaz, O. ; Giraldez, J.V. ; Mateos, L.</creatorcontrib><description>•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented. Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2013.08.011</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anisotropy ; Approximation ; Aquifers ; Banks ; Boussinesq equations ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flow equations ; Groundwater hydraulics ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Mathematical analysis ; Media ; Second-order theory ; Shallow flows ; Unconfined flow</subject><ispartof>Journal of hydrology (Amsterdam), 2013-09, Vol.501, p.183-185</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</citedby><cites>FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169413005891$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27752247$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro-Orgaz, O.</creatorcontrib><creatorcontrib>Giraldez, J.V.</creatorcontrib><creatorcontrib>Mateos, L.</creatorcontrib><title>Second-order shallow flow equation for anisotropic aquifers</title><title>Journal of hydrology (Amsterdam)</title><description>•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented. Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Aquifers</subject><subject>Banks</subject><subject>Boussinesq equations</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flow equations</subject><subject>Groundwater hydraulics</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Mathematical analysis</subject><subject>Media</subject><subject>Second-order theory</subject><subject>Shallow flows</subject><subject>Unconfined flow</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-BKEXwUvrJE2TFA8i4j9Y8KCeQ0wnbEq32U26yn57u-7iVecwc3lv5s2PkHMKBQUqrtqinW-aGLqCAS0LUAVQekAmVMk6ZxLkIZkAMJZTUfNjcpJSC2OVJZ-Q61e0oW_yEBuMWZqbrgtfmds2XK3N4EOfuRAz0_sUhhiW3mZmtfYOYzolR850Cc_2c0reH-7f7p7y2cvj893tLDecqSF3FUfDSqYE1jWl0pVlhayumOWslgiKKSihwcYqwYV1jcPxjcpYCh9McllOyeVu7zKG1RrToBc-Wew602NYJ02FqJXkFP4l5XRMIWCUVjupjSGliE4vo1-YuNEU9JarbvWeq95y1aD0yHX0XexPmGRN56LprU-_ZiZlxdhP6pudDkc0nx6jTtZjb7HxEe2gm-D_uPQNK3aPmA</recordid><startdate>20130925</startdate><enddate>20130925</enddate><creator>Castro-Orgaz, O.</creator><creator>Giraldez, J.V.</creator><creator>Mateos, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130925</creationdate><title>Second-order shallow flow equation for anisotropic aquifers</title><author>Castro-Orgaz, O. ; Giraldez, J.V. ; Mateos, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-f54ea23286e99117f335e2952c4297e0828030dedc8646cfdfe0135ac10b27473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Aquifers</topic><topic>Banks</topic><topic>Boussinesq equations</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flow equations</topic><topic>Groundwater hydraulics</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Mathematical analysis</topic><topic>Media</topic><topic>Second-order theory</topic><topic>Shallow flows</topic><topic>Unconfined flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro-Orgaz, O.</creatorcontrib><creatorcontrib>Giraldez, J.V.</creatorcontrib><creatorcontrib>Mateos, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro-Orgaz, O.</au><au>Giraldez, J.V.</au><au>Mateos, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order shallow flow equation for anisotropic aquifers</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2013-09-25</date><risdate>2013</risdate><volume>501</volume><spage>183</spage><epage>185</epage><pages>183-185</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>•We include anisotropy in the new development of the second-order theory.•The bank-storage problem is used as test case.•A new analytical solution to the second-order theory is presented. Transient unconfined ground-water flow is described using the well-known Boussinesq equation, in which the Dupuit assumptions are implicit. When these assumptions fail, one must recur to the next level of approximation, which is the second-order theory for shallow flow in porous media, developed by Dagan (1967) for isotropic aquifers. When the soil is highly anisotropic Dagan’s second-order theory can become invalid. Here we present the generalized second order theory that account for anisotropy. An analytical solution for the second-order theory with anisotropy is presented for the linearized equation that is used to illustrate this effect on the bank storage problem.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2013.08.011</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2013-09, Vol.501, p.183-185
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_1669874107
source Elsevier ScienceDirect Journals Complete
subjects Anisotropy
Approximation
Aquifers
Banks
Boussinesq equations
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flow equations
Groundwater hydraulics
Hydrogeology
Hydrology
Hydrology. Hydrogeology
Mathematical analysis
Media
Second-order theory
Shallow flows
Unconfined flow
title Second-order shallow flow equation for anisotropic aquifers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20shallow%20flow%20equation%20for%20anisotropic%20aquifers&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Castro-Orgaz,%20O.&rft.date=2013-09-25&rft.volume=501&rft.spage=183&rft.epage=185&rft.pages=183-185&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2013.08.011&rft_dat=%3Cproquest_cross%3E1669874107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664199160&rft_id=info:pmid/&rft_els_id=S0022169413005891&rfr_iscdi=true