Parallelisation of the Lagrangian atmospheric dispersion model NAME

The NAME  Atmospheric Dispersion Model is a Lagrangian particle model used by the Met Office to predict the propagation and spread of pollutants in the atmosphere. The model is routinely used in emergency response applications, where it is important to obtain results as quickly as possible. This req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2013-12, Vol.184 (12), p.2734-2745
Hauptverfasser: Müller, Eike H., Ford, Rupert, Hort, Matthew C., Huggett, Lois, Riley, Graham, Thomson, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2745
container_issue 12
container_start_page 2734
container_title Computer physics communications
container_volume 184
creator Müller, Eike H.
Ford, Rupert
Hort, Matthew C.
Huggett, Lois
Riley, Graham
Thomson, David J.
description The NAME  Atmospheric Dispersion Model is a Lagrangian particle model used by the Met Office to predict the propagation and spread of pollutants in the atmosphere. The model is routinely used in emergency response applications, where it is important to obtain results as quickly as possible. This requirement for a short runtime and the increase in core number of commonly available CPUs, such as the Intel Xeon series, has motivated the parallelisation of NAME  in the OpenMP  shared memory framework. In this work we describe the implementation of this parallelisation strategy in NAME  and discuss the performance of the model for different setups. Due to the independence of the model particles, the parallelisation of the main compute intensive loops is relatively straightforward. The random number generator for modelling sub-grid scale turbulent motion needs to be adapted to ensure that different particles use independent sets of random numbers. We find that on Intel Xeon X5680 CPUs the model shows very good strong scaling up to 12 cores in a realistic emergency response application for predicting the dispersion of volcanic ash in the North Atlantic airspace. We implemented a mechanism for asynchronous reading of meteorological data from disk and demonstrate how this can reduce the runtime if disk access plays a significant role in a model run. To explore the performance on different chip architectures we also ported the part of the code which is used for calculating the gamma dose from a cloud of radioactive particles to a graphics processing unit (GPU) using CUDA-C. We were able to demonstrate a significant speedup of around one order of magnitude relative to the serial CPU version.
doi_str_mv 10.1016/j.cpc.2013.06.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669871500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465513002476</els_id><sourcerecordid>1669871500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-719e7be0295ffcc95a66f8c879ef5cf68bde1b4e621365bc689ac36441417f403</originalsourceid><addsrcrecordid>eNqNkDtPwzAQgC0EEqXwA9gysiT4Ej8SMVVVeUjlMcBsOc65dZXEwU6R-PekKjNiuuX7TncfIddAM6AgbneZGUyWUygyKjKa5ydkBqWs0rxi7JTMKAWaMsH5ObmIcUcplbIqZmT5poNuW2xd1KPzfeJtMm4xWetN0P3G6T7RY-fjsMXgTNK4OGCIB7DzDbbJy-J5dUnOrG4jXv3OOfm4X70vH9P168PTcrFOTQF8TCVUKGukecWtNabiWghbmulItNxYUdYNQs1Q5FAIXhtRVtoUgjFgIC2jxZzcHPcOwX_uMY6qc9Fg2-oe_T4qEKIqJXD6L7TMuSymXnMCR9QEH2NAq4bgOh2-FVB1aKt2amqrDm0VFWpqOzl3Rwend78cBhWNw95g4wKaUTXe_WH_AHlzgLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668257301</pqid></control><display><type>article</type><title>Parallelisation of the Lagrangian atmospheric dispersion model NAME</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Müller, Eike H. ; Ford, Rupert ; Hort, Matthew C. ; Huggett, Lois ; Riley, Graham ; Thomson, David J.</creator><creatorcontrib>Müller, Eike H. ; Ford, Rupert ; Hort, Matthew C. ; Huggett, Lois ; Riley, Graham ; Thomson, David J.</creatorcontrib><description>The NAME  Atmospheric Dispersion Model is a Lagrangian particle model used by the Met Office to predict the propagation and spread of pollutants in the atmosphere. The model is routinely used in emergency response applications, where it is important to obtain results as quickly as possible. This requirement for a short runtime and the increase in core number of commonly available CPUs, such as the Intel Xeon series, has motivated the parallelisation of NAME  in the OpenMP  shared memory framework. In this work we describe the implementation of this parallelisation strategy in NAME  and discuss the performance of the model for different setups. Due to the independence of the model particles, the parallelisation of the main compute intensive loops is relatively straightforward. The random number generator for modelling sub-grid scale turbulent motion needs to be adapted to ensure that different particles use independent sets of random numbers. We find that on Intel Xeon X5680 CPUs the model shows very good strong scaling up to 12 cores in a realistic emergency response application for predicting the dispersion of volcanic ash in the North Atlantic airspace. We implemented a mechanism for asynchronous reading of meteorological data from disk and demonstrate how this can reduce the runtime if disk access plays a significant role in a model run. To explore the performance on different chip architectures we also ported the part of the code which is used for calculating the gamma dose from a cloud of radioactive particles to a graphics processing unit (GPU) using CUDA-C. We were able to demonstrate a significant speedup of around one order of magnitude relative to the serial CPU version.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2013.06.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atmospheric diffusion ; Atmospheric modelling ; Atmospheric models ; Central processing units ; Disks ; Emergency response ; Lagrangian dispersion model ; Mathematical models ; Names ; OpenMP ; Parallel computing ; Random numbers ; Run time (computers)</subject><ispartof>Computer physics communications, 2013-12, Vol.184 (12), p.2734-2745</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-719e7be0295ffcc95a66f8c879ef5cf68bde1b4e621365bc689ac36441417f403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2013.06.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Müller, Eike H.</creatorcontrib><creatorcontrib>Ford, Rupert</creatorcontrib><creatorcontrib>Hort, Matthew C.</creatorcontrib><creatorcontrib>Huggett, Lois</creatorcontrib><creatorcontrib>Riley, Graham</creatorcontrib><creatorcontrib>Thomson, David J.</creatorcontrib><title>Parallelisation of the Lagrangian atmospheric dispersion model NAME</title><title>Computer physics communications</title><description>The NAME  Atmospheric Dispersion Model is a Lagrangian particle model used by the Met Office to predict the propagation and spread of pollutants in the atmosphere. The model is routinely used in emergency response applications, where it is important to obtain results as quickly as possible. This requirement for a short runtime and the increase in core number of commonly available CPUs, such as the Intel Xeon series, has motivated the parallelisation of NAME  in the OpenMP  shared memory framework. In this work we describe the implementation of this parallelisation strategy in NAME  and discuss the performance of the model for different setups. Due to the independence of the model particles, the parallelisation of the main compute intensive loops is relatively straightforward. The random number generator for modelling sub-grid scale turbulent motion needs to be adapted to ensure that different particles use independent sets of random numbers. We find that on Intel Xeon X5680 CPUs the model shows very good strong scaling up to 12 cores in a realistic emergency response application for predicting the dispersion of volcanic ash in the North Atlantic airspace. We implemented a mechanism for asynchronous reading of meteorological data from disk and demonstrate how this can reduce the runtime if disk access plays a significant role in a model run. To explore the performance on different chip architectures we also ported the part of the code which is used for calculating the gamma dose from a cloud of radioactive particles to a graphics processing unit (GPU) using CUDA-C. We were able to demonstrate a significant speedup of around one order of magnitude relative to the serial CPU version.</description><subject>Atmospheric diffusion</subject><subject>Atmospheric modelling</subject><subject>Atmospheric models</subject><subject>Central processing units</subject><subject>Disks</subject><subject>Emergency response</subject><subject>Lagrangian dispersion model</subject><subject>Mathematical models</subject><subject>Names</subject><subject>OpenMP</subject><subject>Parallel computing</subject><subject>Random numbers</subject><subject>Run time (computers)</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAQgC0EEqXwA9gysiT4Ej8SMVVVeUjlMcBsOc65dZXEwU6R-PekKjNiuuX7TncfIddAM6AgbneZGUyWUygyKjKa5ydkBqWs0rxi7JTMKAWaMsH5ObmIcUcplbIqZmT5poNuW2xd1KPzfeJtMm4xWetN0P3G6T7RY-fjsMXgTNK4OGCIB7DzDbbJy-J5dUnOrG4jXv3OOfm4X70vH9P168PTcrFOTQF8TCVUKGukecWtNabiWghbmulItNxYUdYNQs1Q5FAIXhtRVtoUgjFgIC2jxZzcHPcOwX_uMY6qc9Fg2-oe_T4qEKIqJXD6L7TMuSymXnMCR9QEH2NAq4bgOh2-FVB1aKt2amqrDm0VFWpqOzl3Rwend78cBhWNw95g4wKaUTXe_WH_AHlzgLk</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Müller, Eike H.</creator><creator>Ford, Rupert</creator><creator>Hort, Matthew C.</creator><creator>Huggett, Lois</creator><creator>Riley, Graham</creator><creator>Thomson, David J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201312</creationdate><title>Parallelisation of the Lagrangian atmospheric dispersion model NAME</title><author>Müller, Eike H. ; Ford, Rupert ; Hort, Matthew C. ; Huggett, Lois ; Riley, Graham ; Thomson, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-719e7be0295ffcc95a66f8c879ef5cf68bde1b4e621365bc689ac36441417f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric diffusion</topic><topic>Atmospheric modelling</topic><topic>Atmospheric models</topic><topic>Central processing units</topic><topic>Disks</topic><topic>Emergency response</topic><topic>Lagrangian dispersion model</topic><topic>Mathematical models</topic><topic>Names</topic><topic>OpenMP</topic><topic>Parallel computing</topic><topic>Random numbers</topic><topic>Run time (computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Eike H.</creatorcontrib><creatorcontrib>Ford, Rupert</creatorcontrib><creatorcontrib>Hort, Matthew C.</creatorcontrib><creatorcontrib>Huggett, Lois</creatorcontrib><creatorcontrib>Riley, Graham</creatorcontrib><creatorcontrib>Thomson, David J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Eike H.</au><au>Ford, Rupert</au><au>Hort, Matthew C.</au><au>Huggett, Lois</au><au>Riley, Graham</au><au>Thomson, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelisation of the Lagrangian atmospheric dispersion model NAME</atitle><jtitle>Computer physics communications</jtitle><date>2013-12</date><risdate>2013</risdate><volume>184</volume><issue>12</issue><spage>2734</spage><epage>2745</epage><pages>2734-2745</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>The NAME  Atmospheric Dispersion Model is a Lagrangian particle model used by the Met Office to predict the propagation and spread of pollutants in the atmosphere. The model is routinely used in emergency response applications, where it is important to obtain results as quickly as possible. This requirement for a short runtime and the increase in core number of commonly available CPUs, such as the Intel Xeon series, has motivated the parallelisation of NAME  in the OpenMP  shared memory framework. In this work we describe the implementation of this parallelisation strategy in NAME  and discuss the performance of the model for different setups. Due to the independence of the model particles, the parallelisation of the main compute intensive loops is relatively straightforward. The random number generator for modelling sub-grid scale turbulent motion needs to be adapted to ensure that different particles use independent sets of random numbers. We find that on Intel Xeon X5680 CPUs the model shows very good strong scaling up to 12 cores in a realistic emergency response application for predicting the dispersion of volcanic ash in the North Atlantic airspace. We implemented a mechanism for asynchronous reading of meteorological data from disk and demonstrate how this can reduce the runtime if disk access plays a significant role in a model run. To explore the performance on different chip architectures we also ported the part of the code which is used for calculating the gamma dose from a cloud of radioactive particles to a graphics processing unit (GPU) using CUDA-C. We were able to demonstrate a significant speedup of around one order of magnitude relative to the serial CPU version.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2013.06.022</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2013-12, Vol.184 (12), p.2734-2745
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_1669871500
source Elsevier ScienceDirect Journals Complete
subjects Atmospheric diffusion
Atmospheric modelling
Atmospheric models
Central processing units
Disks
Emergency response
Lagrangian dispersion model
Mathematical models
Names
OpenMP
Parallel computing
Random numbers
Run time (computers)
title Parallelisation of the Lagrangian atmospheric dispersion model NAME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelisation%20of%20the%20Lagrangian%20atmospheric%20dispersion%20model%20NAME&rft.jtitle=Computer%20physics%20communications&rft.au=M%C3%BCller,%20Eike%20H.&rft.date=2013-12&rft.volume=184&rft.issue=12&rft.spage=2734&rft.epage=2745&rft.pages=2734-2745&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2013.06.022&rft_dat=%3Cproquest_cross%3E1669871500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668257301&rft_id=info:pmid/&rft_els_id=S0010465513002476&rfr_iscdi=true