Performance and robustness analysis of stochastic jump linear systems using Wasserstein metric

This paper focuses on the performance and robustness analysis of stochastic jump linear systems. In the presence of stochastic jumps, state variables evolve as random process, with associated time varying probability density functions. Consequently, system analysis is performed at the density level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2015-01, Vol.51, p.341-347
Hauptverfasser: Lee, Kooktae, Halder, Abhishek, Bhattacharya, Raktim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue
container_start_page 341
container_title Automatica (Oxford)
container_volume 51
creator Lee, Kooktae
Halder, Abhishek
Bhattacharya, Raktim
description This paper focuses on the performance and robustness analysis of stochastic jump linear systems. In the presence of stochastic jumps, state variables evolve as random process, with associated time varying probability density functions. Consequently, system analysis is performed at the density level and a proper metric is necessary to quantify the system performance. In this paper, Wasserstein metric that measures a distance between probability density functions is employed to develop new results for the performance analysis of stochastic jump linear systems. Both transient and steady-state performance of the systems, with given initial state uncertainties, can be analyzed in this framework. Also, we prove that the convergence of the Wasserstein metric implies the mean square stability. We present a novel "Split-and-Merge" algorithm for propagation of state uncertainty in such systems. Overall, this study provides a unifying framework for the performance and robustness analysis of general stochastic jump linear systems, and not necessarily Markovian that is commonly assumed. The usefulness and efficiency of the proposed method are verified through numerical examples.
doi_str_mv 10.1016/j.automatica.2014.10.080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669871218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669871218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d6573ab3efe15fa3eeca35c00d9f7dafd778158d28f523ec81a29535b78b5ac03</originalsourceid><addsrcrecordid>eNpFkDtPwzAUhT2ARCn8B48sCX7UiTOiipdUCQYQG9aNcw2O8ii-ydB_T6oiMR2dh87wMcalyKWQxW2bwzyNPUzRQ66E3CxxLqw4YyshhMmkqOwFuyRqF7uRVq3Y5yumMKYeBo8choansZ5pGpBosdAdKBIfA6dp9N9AyzNv537PuzggJE4HmrAnPlMcvvgHEGFakjjwHqcU_RU7D9ARXv_pmr0_3L9tn7Ldy-Pz9m6XeVWpKWsKU2qoNQaUJoBG9KCNF6KpQtlAaMrSSmMbZYNRGr2VoCqjTV3a2oAXes1uTr_7NP7MSJPrI3nsOhhwnMnJoqhsKZW0y9Sepj6NRAmD26fYQzo4KdwRo2vdP0Z3xHhsFoz6F388byk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669871218</pqid></control><display><type>article</type><title>Performance and robustness analysis of stochastic jump linear systems using Wasserstein metric</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Kooktae ; Halder, Abhishek ; Bhattacharya, Raktim</creator><creatorcontrib>Lee, Kooktae ; Halder, Abhishek ; Bhattacharya, Raktim</creatorcontrib><description>This paper focuses on the performance and robustness analysis of stochastic jump linear systems. In the presence of stochastic jumps, state variables evolve as random process, with associated time varying probability density functions. Consequently, system analysis is performed at the density level and a proper metric is necessary to quantify the system performance. In this paper, Wasserstein metric that measures a distance between probability density functions is employed to develop new results for the performance analysis of stochastic jump linear systems. Both transient and steady-state performance of the systems, with given initial state uncertainties, can be analyzed in this framework. Also, we prove that the convergence of the Wasserstein metric implies the mean square stability. We present a novel "Split-and-Merge" algorithm for propagation of state uncertainty in such systems. Overall, this study provides a unifying framework for the performance and robustness analysis of general stochastic jump linear systems, and not necessarily Markovian that is commonly assumed. The usefulness and efficiency of the proposed method are verified through numerical examples.</description><identifier>ISSN: 0005-1098</identifier><identifier>DOI: 10.1016/j.automatica.2014.10.080</identifier><language>eng</language><subject>Convergence ; Density ; Linear systems ; Mathematical models ; Mean square values ; Probability density functions ; Robustness ; Stochasticity ; Uncertainty</subject><ispartof>Automatica (Oxford), 2015-01, Vol.51, p.341-347</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-d6573ab3efe15fa3eeca35c00d9f7dafd778158d28f523ec81a29535b78b5ac03</citedby><cites>FETCH-LOGICAL-c292t-d6573ab3efe15fa3eeca35c00d9f7dafd778158d28f523ec81a29535b78b5ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Kooktae</creatorcontrib><creatorcontrib>Halder, Abhishek</creatorcontrib><creatorcontrib>Bhattacharya, Raktim</creatorcontrib><title>Performance and robustness analysis of stochastic jump linear systems using Wasserstein metric</title><title>Automatica (Oxford)</title><description>This paper focuses on the performance and robustness analysis of stochastic jump linear systems. In the presence of stochastic jumps, state variables evolve as random process, with associated time varying probability density functions. Consequently, system analysis is performed at the density level and a proper metric is necessary to quantify the system performance. In this paper, Wasserstein metric that measures a distance between probability density functions is employed to develop new results for the performance analysis of stochastic jump linear systems. Both transient and steady-state performance of the systems, with given initial state uncertainties, can be analyzed in this framework. Also, we prove that the convergence of the Wasserstein metric implies the mean square stability. We present a novel "Split-and-Merge" algorithm for propagation of state uncertainty in such systems. Overall, this study provides a unifying framework for the performance and robustness analysis of general stochastic jump linear systems, and not necessarily Markovian that is commonly assumed. The usefulness and efficiency of the proposed method are verified through numerical examples.</description><subject>Convergence</subject><subject>Density</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Mean square values</subject><subject>Probability density functions</subject><subject>Robustness</subject><subject>Stochasticity</subject><subject>Uncertainty</subject><issn>0005-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkDtPwzAUhT2ARCn8B48sCX7UiTOiipdUCQYQG9aNcw2O8ii-ydB_T6oiMR2dh87wMcalyKWQxW2bwzyNPUzRQ66E3CxxLqw4YyshhMmkqOwFuyRqF7uRVq3Y5yumMKYeBo8choansZ5pGpBosdAdKBIfA6dp9N9AyzNv537PuzggJE4HmrAnPlMcvvgHEGFakjjwHqcU_RU7D9ARXv_pmr0_3L9tn7Ldy-Pz9m6XeVWpKWsKU2qoNQaUJoBG9KCNF6KpQtlAaMrSSmMbZYNRGr2VoCqjTV3a2oAXes1uTr_7NP7MSJPrI3nsOhhwnMnJoqhsKZW0y9Sepj6NRAmD26fYQzo4KdwRo2vdP0Z3xHhsFoz6F388byk</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Lee, Kooktae</creator><creator>Halder, Abhishek</creator><creator>Bhattacharya, Raktim</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>Performance and robustness analysis of stochastic jump linear systems using Wasserstein metric</title><author>Lee, Kooktae ; Halder, Abhishek ; Bhattacharya, Raktim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d6573ab3efe15fa3eeca35c00d9f7dafd778158d28f523ec81a29535b78b5ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Convergence</topic><topic>Density</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Mean square values</topic><topic>Probability density functions</topic><topic>Robustness</topic><topic>Stochasticity</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kooktae</creatorcontrib><creatorcontrib>Halder, Abhishek</creatorcontrib><creatorcontrib>Bhattacharya, Raktim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kooktae</au><au>Halder, Abhishek</au><au>Bhattacharya, Raktim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and robustness analysis of stochastic jump linear systems using Wasserstein metric</atitle><jtitle>Automatica (Oxford)</jtitle><date>2015-01</date><risdate>2015</risdate><volume>51</volume><spage>341</spage><epage>347</epage><pages>341-347</pages><issn>0005-1098</issn><abstract>This paper focuses on the performance and robustness analysis of stochastic jump linear systems. In the presence of stochastic jumps, state variables evolve as random process, with associated time varying probability density functions. Consequently, system analysis is performed at the density level and a proper metric is necessary to quantify the system performance. In this paper, Wasserstein metric that measures a distance between probability density functions is employed to develop new results for the performance analysis of stochastic jump linear systems. Both transient and steady-state performance of the systems, with given initial state uncertainties, can be analyzed in this framework. Also, we prove that the convergence of the Wasserstein metric implies the mean square stability. We present a novel "Split-and-Merge" algorithm for propagation of state uncertainty in such systems. Overall, this study provides a unifying framework for the performance and robustness analysis of general stochastic jump linear systems, and not necessarily Markovian that is commonly assumed. The usefulness and efficiency of the proposed method are verified through numerical examples.</abstract><doi>10.1016/j.automatica.2014.10.080</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2015-01, Vol.51, p.341-347
issn 0005-1098
language eng
recordid cdi_proquest_miscellaneous_1669871218
source Elsevier ScienceDirect Journals
subjects Convergence
Density
Linear systems
Mathematical models
Mean square values
Probability density functions
Robustness
Stochasticity
Uncertainty
title Performance and robustness analysis of stochastic jump linear systems using Wasserstein metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20robustness%20analysis%20of%20stochastic%20jump%20linear%20systems%20using%20Wasserstein%20metric&rft.jtitle=Automatica%20(Oxford)&rft.au=Lee,%20Kooktae&rft.date=2015-01&rft.volume=51&rft.spage=341&rft.epage=347&rft.pages=341-347&rft.issn=0005-1098&rft_id=info:doi/10.1016/j.automatica.2014.10.080&rft_dat=%3Cproquest_cross%3E1669871218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669871218&rft_id=info:pmid/&rfr_iscdi=true