Improved Lower Bound for Online Strip Packing
We study the online strip packing problem and derive an improved lower bound of ρ ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982 ) using only two types of rectangles. In addition,...
Gespeichert in:
Veröffentlicht in: | Theory of computing systems 2015-01, Vol.56 (1), p.41-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Theory of computing systems |
container_volume | 56 |
creator | Harren, Rolf Kern, Walter |
description | We study the online strip packing problem and derive an improved lower bound of
ρ
≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225,
1982
) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio
for packing instances of this type. |
doi_str_mv | 10.1007/s00224-013-9494-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669870854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669870854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RmSS7mxy1-FEoVFDPId3Nlq3bpCZdxX9v2vUggqeZw_MO7zyEnCNcIUB5HQEYExSQUyWUoPKAjFBwTkEoONzvjAqewzE5iXEFAFwCjAidrjfBf9g6m_lPG7Jb37s6a3zI5q5rnc2et6HdZE-memvd8pQcNaaL9uxnjsnr_d3L5JHO5g_Tyc2MVlyyLa0bgRwL0eQsV7JmBhcKGa9KU5TCLvKCSQE5oE3NmcIGmWWsKu0CjQCLnI_J5XA3dXvvbdzqdRsr23XGWd9HjUWhZAkyFwm9-IOufB9capcoUaYnYU_hQFXBxxhsozehXZvwpRH0TqAeBOokUO8EapkybMjExLqlDb8u_xv6BvHzbyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647800054</pqid></control><display><type>article</type><title>Improved Lower Bound for Online Strip Packing</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Harren, Rolf ; Kern, Walter</creator><creatorcontrib>Harren, Rolf ; Kern, Walter</creatorcontrib><description>We study the online strip packing problem and derive an improved lower bound of
ρ
≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225,
1982
) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio
for packing instances of this type.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-013-9494-8</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Analysis ; Approximation ; Competition ; Computation ; Computer Science ; Construction ; Lower bounds ; Online ; Packing problem ; Performance evaluation ; Rectangles ; Strip ; Studies ; Texts ; Theory of Computation</subject><ispartof>Theory of computing systems, 2015-01, Vol.56 (1), p.41-72</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</citedby><cites>FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-013-9494-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-013-9494-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Harren, Rolf</creatorcontrib><creatorcontrib>Kern, Walter</creatorcontrib><title>Improved Lower Bound for Online Strip Packing</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>We study the online strip packing problem and derive an improved lower bound of
ρ
≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225,
1982
) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio
for packing instances of this type.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Competition</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Lower bounds</subject><subject>Online</subject><subject>Packing problem</subject><subject>Performance evaluation</subject><subject>Rectangles</subject><subject>Strip</subject><subject>Studies</subject><subject>Texts</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RmSS7mxy1-FEoVFDPId3Nlq3bpCZdxX9v2vUggqeZw_MO7zyEnCNcIUB5HQEYExSQUyWUoPKAjFBwTkEoONzvjAqewzE5iXEFAFwCjAidrjfBf9g6m_lPG7Jb37s6a3zI5q5rnc2et6HdZE-memvd8pQcNaaL9uxnjsnr_d3L5JHO5g_Tyc2MVlyyLa0bgRwL0eQsV7JmBhcKGa9KU5TCLvKCSQE5oE3NmcIGmWWsKu0CjQCLnI_J5XA3dXvvbdzqdRsr23XGWd9HjUWhZAkyFwm9-IOufB9capcoUaYnYU_hQFXBxxhsozehXZvwpRH0TqAeBOokUO8EapkybMjExLqlDb8u_xv6BvHzbyY</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Harren, Rolf</creator><creator>Kern, Walter</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20150101</creationdate><title>Improved Lower Bound for Online Strip Packing</title><author>Harren, Rolf ; Kern, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Competition</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Lower bounds</topic><topic>Online</topic><topic>Packing problem</topic><topic>Performance evaluation</topic><topic>Rectangles</topic><topic>Strip</topic><topic>Studies</topic><topic>Texts</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harren, Rolf</creatorcontrib><creatorcontrib>Kern, Walter</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harren, Rolf</au><au>Kern, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Lower Bound for Online Strip Packing</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>56</volume><issue>1</issue><spage>41</spage><epage>72</epage><pages>41-72</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>We study the online strip packing problem and derive an improved lower bound of
ρ
≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225,
1982
) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio
for packing instances of this type.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00224-013-9494-8</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-4350 |
ispartof | Theory of computing systems, 2015-01, Vol.56 (1), p.41-72 |
issn | 1432-4350 1433-0490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669870854 |
source | SpringerLink Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Analysis Approximation Competition Computation Computer Science Construction Lower bounds Online Packing problem Performance evaluation Rectangles Strip Studies Texts Theory of Computation |
title | Improved Lower Bound for Online Strip Packing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Lower%20Bound%20for%20Online%20Strip%20Packing&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Harren,%20Rolf&rft.date=2015-01-01&rft.volume=56&rft.issue=1&rft.spage=41&rft.epage=72&rft.pages=41-72&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-013-9494-8&rft_dat=%3Cproquest_cross%3E1669870854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647800054&rft_id=info:pmid/&rfr_iscdi=true |