Improved Lower Bound for Online Strip Packing

We study the online strip packing problem and derive an improved lower bound of ρ ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982 ) using only two types of rectangles. In addition,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2015-01, Vol.56 (1), p.41-72
Hauptverfasser: Harren, Rolf, Kern, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 41
container_title Theory of computing systems
container_volume 56
creator Harren, Rolf
Kern, Walter
description We study the online strip packing problem and derive an improved lower bound of ρ ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982 ) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio for packing instances of this type.
doi_str_mv 10.1007/s00224-013-9494-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669870854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669870854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RmSS7mxy1-FEoVFDPId3Nlq3bpCZdxX9v2vUggqeZw_MO7zyEnCNcIUB5HQEYExSQUyWUoPKAjFBwTkEoONzvjAqewzE5iXEFAFwCjAidrjfBf9g6m_lPG7Jb37s6a3zI5q5rnc2et6HdZE-memvd8pQcNaaL9uxnjsnr_d3L5JHO5g_Tyc2MVlyyLa0bgRwL0eQsV7JmBhcKGa9KU5TCLvKCSQE5oE3NmcIGmWWsKu0CjQCLnI_J5XA3dXvvbdzqdRsr23XGWd9HjUWhZAkyFwm9-IOufB9capcoUaYnYU_hQFXBxxhsozehXZvwpRH0TqAeBOokUO8EapkybMjExLqlDb8u_xv6BvHzbyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647800054</pqid></control><display><type>article</type><title>Improved Lower Bound for Online Strip Packing</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Harren, Rolf ; Kern, Walter</creator><creatorcontrib>Harren, Rolf ; Kern, Walter</creatorcontrib><description>We study the online strip packing problem and derive an improved lower bound of ρ ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982 ) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio for packing instances of this type.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-013-9494-8</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Analysis ; Approximation ; Competition ; Computation ; Computer Science ; Construction ; Lower bounds ; Online ; Packing problem ; Performance evaluation ; Rectangles ; Strip ; Studies ; Texts ; Theory of Computation</subject><ispartof>Theory of computing systems, 2015-01, Vol.56 (1), p.41-72</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</citedby><cites>FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-013-9494-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-013-9494-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Harren, Rolf</creatorcontrib><creatorcontrib>Kern, Walter</creatorcontrib><title>Improved Lower Bound for Online Strip Packing</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>We study the online strip packing problem and derive an improved lower bound of ρ ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982 ) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio for packing instances of this type.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Competition</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Lower bounds</subject><subject>Online</subject><subject>Packing problem</subject><subject>Performance evaluation</subject><subject>Rectangles</subject><subject>Strip</subject><subject>Studies</subject><subject>Texts</subject><subject>Theory of Computation</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RmSS7mxy1-FEoVFDPId3Nlq3bpCZdxX9v2vUggqeZw_MO7zyEnCNcIUB5HQEYExSQUyWUoPKAjFBwTkEoONzvjAqewzE5iXEFAFwCjAidrjfBf9g6m_lPG7Jb37s6a3zI5q5rnc2et6HdZE-memvd8pQcNaaL9uxnjsnr_d3L5JHO5g_Tyc2MVlyyLa0bgRwL0eQsV7JmBhcKGa9KU5TCLvKCSQE5oE3NmcIGmWWsKu0CjQCLnI_J5XA3dXvvbdzqdRsr23XGWd9HjUWhZAkyFwm9-IOufB9capcoUaYnYU_hQFXBxxhsozehXZvwpRH0TqAeBOokUO8EapkybMjExLqlDb8u_xv6BvHzbyY</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Harren, Rolf</creator><creator>Kern, Walter</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20150101</creationdate><title>Improved Lower Bound for Online Strip Packing</title><author>Harren, Rolf ; Kern, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-df413164f52598d2a1b9123c7a674eb562840501e007291f12e22c7eb1a40e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Competition</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Lower bounds</topic><topic>Online</topic><topic>Packing problem</topic><topic>Performance evaluation</topic><topic>Rectangles</topic><topic>Strip</topic><topic>Studies</topic><topic>Texts</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harren, Rolf</creatorcontrib><creatorcontrib>Kern, Walter</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harren, Rolf</au><au>Kern, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Lower Bound for Online Strip Packing</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>56</volume><issue>1</issue><spage>41</spage><epage>72</epage><pages>41-72</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>We study the online strip packing problem and derive an improved lower bound of ρ ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982 ) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio for packing instances of this type.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00224-013-9494-8</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2015-01, Vol.56 (1), p.41-72
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_miscellaneous_1669870854
source SpringerLink Journals; EBSCOhost Business Source Complete
subjects Algorithms
Analysis
Approximation
Competition
Computation
Computer Science
Construction
Lower bounds
Online
Packing problem
Performance evaluation
Rectangles
Strip
Studies
Texts
Theory of Computation
title Improved Lower Bound for Online Strip Packing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Lower%20Bound%20for%20Online%20Strip%20Packing&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Harren,%20Rolf&rft.date=2015-01-01&rft.volume=56&rft.issue=1&rft.spage=41&rft.epage=72&rft.pages=41-72&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-013-9494-8&rft_dat=%3Cproquest_cross%3E1669870854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647800054&rft_id=info:pmid/&rfr_iscdi=true