Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization
We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2013-03, Vol.184 (3), p.689-697 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 697 |
---|---|
container_issue | 3 |
container_start_page | 689 |
container_title | Computer physics communications |
container_volume | 184 |
creator | Johnson, Chris Kennedy, A.D. |
description | We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods. |
doi_str_mv | 10.1016/j.cpc.2012.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669867231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465512003797</els_id><sourcerecordid>1669867231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-6cd9914489b34ccb6ae695c01accc5c3c3c2b91b1bceb8b546d666a228556f3a3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN0CD8DNx14SPE7ijdVThdqCtIJLOVvOZBa8SuLUdqiKxLu0rwIvhrfLuZrDSP_834zmZ-wMRAkC1PmuxBlLKUCWAKUQ1Tu2gnatC6nr-j1bCQGiqFXTfGAfY9wJIdZrXa3Y0_UyUnBoB95TojC6ySbnJ-63fLYhuTyIM2EKy7jXLveWrE58tClzFPkS3XTHLd-8_J3w0cfnPyOle9_zXy7d80hDpt0D8UA-ZP3OT3Zwj_-unLCjrR0inb71Y3b77euPi8tic_P96uLLpkDZylQo7LWGum51V9WInbKkdIMCLCI2WOWSnYYOOqSu7Zpa9UopK2XbNGpb2eqYfTrsnYP_uVBMZnQRaRjsRH6JBpTSrVrLCrIVDlYMPsZAWzMHN9rw24Aw-6jNzuSozT5qA2By1Jn5fGAo__DgKJiIjiak3oX8vOm9-w_9CsSkjAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669867231</pqid></control><display><type>article</type><title>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Johnson, Chris ; Kennedy, A.D.</creator><creatorcontrib>Johnson, Chris ; Kennedy, A.D.</creatorcontrib><description>We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2012.11.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Arithmetic ; Computer simulation ; Eigenvalue ; Eigenvalues ; Eigenvector ; Eigenvectors ; Hermitian ; Krylov ; Lanczos ; LANSO ; Lattice ; Lattices ; Mathematical models ; Operators ; Reproduction ; Spectrum</subject><ispartof>Computer physics communications, 2013-03, Vol.184 (3), p.689-697</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-6cd9914489b34ccb6ae695c01accc5c3c3c2b91b1bceb8b546d666a228556f3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465512003797$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Johnson, Chris</creatorcontrib><creatorcontrib>Kennedy, A.D.</creatorcontrib><title>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</title><title>Computer physics communications</title><description>We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Computer simulation</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Eigenvector</subject><subject>Eigenvectors</subject><subject>Hermitian</subject><subject>Krylov</subject><subject>Lanczos</subject><subject>LANSO</subject><subject>Lattice</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Reproduction</subject><subject>Spectrum</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN0CD8DNx14SPE7ijdVThdqCtIJLOVvOZBa8SuLUdqiKxLu0rwIvhrfLuZrDSP_834zmZ-wMRAkC1PmuxBlLKUCWAKUQ1Tu2gnatC6nr-j1bCQGiqFXTfGAfY9wJIdZrXa3Y0_UyUnBoB95TojC6ySbnJ-63fLYhuTyIM2EKy7jXLveWrE58tClzFPkS3XTHLd-8_J3w0cfnPyOle9_zXy7d80hDpt0D8UA-ZP3OT3Zwj_-unLCjrR0inb71Y3b77euPi8tic_P96uLLpkDZylQo7LWGum51V9WInbKkdIMCLCI2WOWSnYYOOqSu7Zpa9UopK2XbNGpb2eqYfTrsnYP_uVBMZnQRaRjsRH6JBpTSrVrLCrIVDlYMPsZAWzMHN9rw24Aw-6jNzuSozT5qA2By1Jn5fGAo__DgKJiIjiak3oX8vOm9-w_9CsSkjAk</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Johnson, Chris</creator><creator>Kennedy, A.D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201303</creationdate><title>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</title><author>Johnson, Chris ; Kennedy, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-6cd9914489b34ccb6ae695c01accc5c3c3c2b91b1bceb8b546d666a228556f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Computer simulation</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Eigenvector</topic><topic>Eigenvectors</topic><topic>Hermitian</topic><topic>Krylov</topic><topic>Lanczos</topic><topic>LANSO</topic><topic>Lattice</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Reproduction</topic><topic>Spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Chris</creatorcontrib><creatorcontrib>Kennedy, A.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Chris</au><au>Kennedy, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</atitle><jtitle>Computer physics communications</jtitle><date>2013-03</date><risdate>2013</risdate><volume>184</volume><issue>3</issue><spage>689</spage><epage>697</epage><pages>689-697</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2012.11.003</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2013-03, Vol.184 (3), p.689-697 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669867231 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Arithmetic Computer simulation Eigenvalue Eigenvalues Eigenvector Eigenvectors Hermitian Krylov Lanczos LANSO Lattice Lattices Mathematical models Operators Reproduction Spectrum |
title | Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20determination%20of%20partial%20spectrum%20of%20Hermitian%20matrices%20using%20a%20L%C3%A1nczos%C2%A0method%20with%20selective%20reorthogonalization&rft.jtitle=Computer%20physics%20communications&rft.au=Johnson,%20Chris&rft.date=2013-03&rft.volume=184&rft.issue=3&rft.spage=689&rft.epage=697&rft.pages=689-697&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2012.11.003&rft_dat=%3Cproquest_cross%3E1669867231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669867231&rft_id=info:pmid/&rft_els_id=S0010465512003797&rfr_iscdi=true |