Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization

We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2013-03, Vol.184 (3), p.689-697
Hauptverfasser: Johnson, Chris, Kennedy, A.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 3
container_start_page 689
container_title Computer physics communications
container_volume 184
creator Johnson, Chris
Kennedy, A.D.
description We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.
doi_str_mv 10.1016/j.cpc.2012.11.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669867231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465512003797</els_id><sourcerecordid>1669867231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-6cd9914489b34ccb6ae695c01accc5c3c3c2b91b1bceb8b546d666a228556f3a3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN0CD8DNx14SPE7ijdVThdqCtIJLOVvOZBa8SuLUdqiKxLu0rwIvhrfLuZrDSP_834zmZ-wMRAkC1PmuxBlLKUCWAKUQ1Tu2gnatC6nr-j1bCQGiqFXTfGAfY9wJIdZrXa3Y0_UyUnBoB95TojC6ySbnJ-63fLYhuTyIM2EKy7jXLveWrE58tClzFPkS3XTHLd-8_J3w0cfnPyOle9_zXy7d80hDpt0D8UA-ZP3OT3Zwj_-unLCjrR0inb71Y3b77euPi8tic_P96uLLpkDZylQo7LWGum51V9WInbKkdIMCLCI2WOWSnYYOOqSu7Zpa9UopK2XbNGpb2eqYfTrsnYP_uVBMZnQRaRjsRH6JBpTSrVrLCrIVDlYMPsZAWzMHN9rw24Aw-6jNzuSozT5qA2By1Jn5fGAo__DgKJiIjiak3oX8vOm9-w_9CsSkjAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669867231</pqid></control><display><type>article</type><title>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Johnson, Chris ; Kennedy, A.D.</creator><creatorcontrib>Johnson, Chris ; Kennedy, A.D.</creatorcontrib><description>We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2012.11.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Arithmetic ; Computer simulation ; Eigenvalue ; Eigenvalues ; Eigenvector ; Eigenvectors ; Hermitian ; Krylov ; Lanczos ; LANSO ; Lattice ; Lattices ; Mathematical models ; Operators ; Reproduction ; Spectrum</subject><ispartof>Computer physics communications, 2013-03, Vol.184 (3), p.689-697</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-6cd9914489b34ccb6ae695c01accc5c3c3c2b91b1bceb8b546d666a228556f3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465512003797$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Johnson, Chris</creatorcontrib><creatorcontrib>Kennedy, A.D.</creatorcontrib><title>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</title><title>Computer physics communications</title><description>We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Computer simulation</subject><subject>Eigenvalue</subject><subject>Eigenvalues</subject><subject>Eigenvector</subject><subject>Eigenvectors</subject><subject>Hermitian</subject><subject>Krylov</subject><subject>Lanczos</subject><subject>LANSO</subject><subject>Lattice</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Operators</subject><subject>Reproduction</subject><subject>Spectrum</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN0CD8DNx14SPE7ijdVThdqCtIJLOVvOZBa8SuLUdqiKxLu0rwIvhrfLuZrDSP_834zmZ-wMRAkC1PmuxBlLKUCWAKUQ1Tu2gnatC6nr-j1bCQGiqFXTfGAfY9wJIdZrXa3Y0_UyUnBoB95TojC6ySbnJ-63fLYhuTyIM2EKy7jXLveWrE58tClzFPkS3XTHLd-8_J3w0cfnPyOle9_zXy7d80hDpt0D8UA-ZP3OT3Zwj_-unLCjrR0inb71Y3b77euPi8tic_P96uLLpkDZylQo7LWGum51V9WInbKkdIMCLCI2WOWSnYYOOqSu7Zpa9UopK2XbNGpb2eqYfTrsnYP_uVBMZnQRaRjsRH6JBpTSrVrLCrIVDlYMPsZAWzMHN9rw24Aw-6jNzuSozT5qA2By1Jn5fGAo__DgKJiIjiak3oX8vOm9-w_9CsSkjAk</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Johnson, Chris</creator><creator>Kennedy, A.D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201303</creationdate><title>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</title><author>Johnson, Chris ; Kennedy, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-6cd9914489b34ccb6ae695c01accc5c3c3c2b91b1bceb8b546d666a228556f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Computer simulation</topic><topic>Eigenvalue</topic><topic>Eigenvalues</topic><topic>Eigenvector</topic><topic>Eigenvectors</topic><topic>Hermitian</topic><topic>Krylov</topic><topic>Lanczos</topic><topic>LANSO</topic><topic>Lattice</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Operators</topic><topic>Reproduction</topic><topic>Spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Chris</creatorcontrib><creatorcontrib>Kennedy, A.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Chris</au><au>Kennedy, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization</atitle><jtitle>Computer physics communications</jtitle><date>2013-03</date><risdate>2013</risdate><volume>184</volume><issue>3</issue><spage>689</spage><epage>697</epage><pages>689-697</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We introduce a new algorithm for finding the eigenvalues and eigenvectors of Hermitian matrices within a specified region, based upon the LANSO algorithm of Parlett and Scott. It uses selective reorthogonalization to avoid the duplication of eigenpairs in finite-precision arithmetic, but uses a new bound to decide when such reorthogonalization is required, and only reorthogonalizes with respect to eigenpairs within the region of interest. We investigate its performance for the Hermitian Wilson–Dirac operator γ5D in lattice quantum chromodynamics, and compare it with previous methods.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2012.11.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2013-03, Vol.184 (3), p.689-697
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_1669867231
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Arithmetic
Computer simulation
Eigenvalue
Eigenvalues
Eigenvector
Eigenvectors
Hermitian
Krylov
Lanczos
LANSO
Lattice
Lattices
Mathematical models
Operators
Reproduction
Spectrum
title Numerical determination of partial spectrum of Hermitian matrices using a Lánczos method with selective reorthogonalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20determination%20of%20partial%20spectrum%20of%20Hermitian%20matrices%20using%20a%20L%C3%A1nczos%C2%A0method%20with%20selective%20reorthogonalization&rft.jtitle=Computer%20physics%20communications&rft.au=Johnson,%20Chris&rft.date=2013-03&rft.volume=184&rft.issue=3&rft.spage=689&rft.epage=697&rft.pages=689-697&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2012.11.003&rft_dat=%3Cproquest_cross%3E1669867231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669867231&rft_id=info:pmid/&rft_els_id=S0010465512003797&rfr_iscdi=true