factors with bounded number of components in claw-free graphs

In this paper, we show that every -connected claw-free graph has a -factor having at most cycles, where is the independence number of . As a corollary of this result, we also prove that every -connected claw-free graph has a -factor with at most cycles, where is the minimum degree of . This is an ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2015-05, Vol.338 (5), p.793-808
Hauptverfasser: Ozeki, Kenta, Ryjacek, Zdenek, Yoshimoto, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 808
container_issue 5
container_start_page 793
container_title Discrete mathematics
container_volume 338
creator Ozeki, Kenta
Ryjacek, Zdenek
Yoshimoto, Kiyoshi
description In this paper, we show that every -connected claw-free graph has a -factor having at most cycles, where is the independence number of . As a corollary of this result, we also prove that every -connected claw-free graph has a -factor with at most cycles, where is the minimum degree of . This is an extension of a known result on the number of cycles of a -factor in -connected claw-free graphs.
doi_str_mv 10.1016/j.disc.2014.12.017
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669863583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669863583</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16698635833</originalsourceid><addsrcrecordid>eNqVjj0OgjAYQDtoIv5cwKmjC7WlUnFwMhoP4OBGCnwIBFrs14br6-AFnF5e8oZHyFZwJrhQ-45VLZYs4eLARMK4OM5IxLlIYqnS54IsETv-dSWziJxrXXrrkE6tb2hhg6mgoiYMBThqa1raYbQGjEfaGlr2eoprB0BfTo8Nrsm81j3C5scV2d2uj8s9Hp19B0CfD98V6HttwAbMhVKnTMk0k_KP9AOYN0H1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669863583</pqid></control><display><type>article</type><title>factors with bounded number of components in claw-free graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ozeki, Kenta ; Ryjacek, Zdenek ; Yoshimoto, Kiyoshi</creator><creatorcontrib>Ozeki, Kenta ; Ryjacek, Zdenek ; Yoshimoto, Kiyoshi</creatorcontrib><description>In this paper, we show that every -connected claw-free graph has a -factor having at most cycles, where is the independence number of . As a corollary of this result, we also prove that every -connected claw-free graph has a -factor with at most cycles, where is the minimum degree of . This is an extension of a known result on the number of cycles of a -factor in -connected claw-free graphs.</description><identifier>ISSN: 0012-365X</identifier><identifier>DOI: 10.1016/j.disc.2014.12.017</identifier><language>eng</language><subject>Graphs ; Mathematical analysis</subject><ispartof>Discrete mathematics, 2015-05, Vol.338 (5), p.793-808</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ozeki, Kenta</creatorcontrib><creatorcontrib>Ryjacek, Zdenek</creatorcontrib><creatorcontrib>Yoshimoto, Kiyoshi</creatorcontrib><title>factors with bounded number of components in claw-free graphs</title><title>Discrete mathematics</title><description>In this paper, we show that every -connected claw-free graph has a -factor having at most cycles, where is the independence number of . As a corollary of this result, we also prove that every -connected claw-free graph has a -factor with at most cycles, where is the minimum degree of . This is an extension of a known result on the number of cycles of a -factor in -connected claw-free graphs.</description><subject>Graphs</subject><subject>Mathematical analysis</subject><issn>0012-365X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVjj0OgjAYQDtoIv5cwKmjC7WlUnFwMhoP4OBGCnwIBFrs14br6-AFnF5e8oZHyFZwJrhQ-45VLZYs4eLARMK4OM5IxLlIYqnS54IsETv-dSWziJxrXXrrkE6tb2hhg6mgoiYMBThqa1raYbQGjEfaGlr2eoprB0BfTo8Nrsm81j3C5scV2d2uj8s9Hp19B0CfD98V6HttwAbMhVKnTMk0k_KP9AOYN0H1</recordid><startdate>20150506</startdate><enddate>20150506</enddate><creator>Ozeki, Kenta</creator><creator>Ryjacek, Zdenek</creator><creator>Yoshimoto, Kiyoshi</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150506</creationdate><title>factors with bounded number of components in claw-free graphs</title><author>Ozeki, Kenta ; Ryjacek, Zdenek ; Yoshimoto, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16698635833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Graphs</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozeki, Kenta</creatorcontrib><creatorcontrib>Ryjacek, Zdenek</creatorcontrib><creatorcontrib>Yoshimoto, Kiyoshi</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozeki, Kenta</au><au>Ryjacek, Zdenek</au><au>Yoshimoto, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>factors with bounded number of components in claw-free graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2015-05-06</date><risdate>2015</risdate><volume>338</volume><issue>5</issue><spage>793</spage><epage>808</epage><pages>793-808</pages><issn>0012-365X</issn><abstract>In this paper, we show that every -connected claw-free graph has a -factor having at most cycles, where is the independence number of . As a corollary of this result, we also prove that every -connected claw-free graph has a -factor with at most cycles, where is the minimum degree of . This is an extension of a known result on the number of cycles of a -factor in -connected claw-free graphs.</abstract><doi>10.1016/j.disc.2014.12.017</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2015-05, Vol.338 (5), p.793-808
issn 0012-365X
language eng
recordid cdi_proquest_miscellaneous_1669863583
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Graphs
Mathematical analysis
title factors with bounded number of components in claw-free graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=factors%20with%20bounded%20number%20of%20components%20in%20claw-free%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Ozeki,%20Kenta&rft.date=2015-05-06&rft.volume=338&rft.issue=5&rft.spage=793&rft.epage=808&rft.pages=793-808&rft.issn=0012-365X&rft_id=info:doi/10.1016/j.disc.2014.12.017&rft_dat=%3Cproquest%3E1669863583%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669863583&rft_id=info:pmid/&rfr_iscdi=true