Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems
Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques th...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2015-02, Vol.219, p.25-39 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | Artificial intelligence |
container_volume | 219 |
creator | Horsburgh, Ben Craw, Susan Massie, Stewart |
description | Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles. |
doi_str_mv | 10.1016/j.artint.2014.11.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669862295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370214001362</els_id><sourcerecordid>1669862295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw85emlN0jZtLoKI_2BBED2HJH2tWbbtmpcK--3NUs-ehvf4zcAMIdec5ZxxebvNTYh-jLlgvMw5zxkrT8iKN7XIaiX4KVmx9MqKmolzcoG4TWehFF-R9w2YMPqxp3uEuZ2yaHqkcaJm7gcYI8W9CQg0vfsj5Uf6dbDBt3SY0TsawE1DAlsIFA8YYcBLctaZHcLVn67J59Pjx8NLtnl7fn2432SuaKqYKSithFZZYx2ziknZlZDUiNo2vK1U3TAhoG66SolCNLKCSrCS29oq0ZqiWJObJXcfpu8ZMOrBo4Pdzowwzai5lKqRQqgqoeWCujAhBuj0PvjBhIPmTB8n1Fu9TKiPE2rOddor2e4WG6QaPx6CRudhdND61DvqdvL_B_wCZJ180Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669862295</pqid></control><display><type>article</type><title>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Horsburgh, Ben ; Craw, Susan ; Massie, Stewart</creator><creatorcontrib>Horsburgh, Ben ; Craw, Susan ; Massie, Stewart</creatorcontrib><description>Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2014.11.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Expert systems ; Hybrid representations ; Hybrid systems ; Music ; Music recommendation ; On-line systems ; Queries ; Recommender systems ; Representations ; Tags</subject><ispartof>Artificial intelligence, 2015-02, Vol.219, p.25-39</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</citedby><cites>FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2014.11.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Horsburgh, Ben</creatorcontrib><creatorcontrib>Craw, Susan</creatorcontrib><creatorcontrib>Massie, Stewart</creatorcontrib><title>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</title><title>Artificial intelligence</title><description>Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles.</description><subject>Expert systems</subject><subject>Hybrid representations</subject><subject>Hybrid systems</subject><subject>Music</subject><subject>Music recommendation</subject><subject>On-line systems</subject><subject>Queries</subject><subject>Recommender systems</subject><subject>Representations</subject><subject>Tags</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw85emlN0jZtLoKI_2BBED2HJH2tWbbtmpcK--3NUs-ehvf4zcAMIdec5ZxxebvNTYh-jLlgvMw5zxkrT8iKN7XIaiX4KVmx9MqKmolzcoG4TWehFF-R9w2YMPqxp3uEuZ2yaHqkcaJm7gcYI8W9CQg0vfsj5Uf6dbDBt3SY0TsawE1DAlsIFA8YYcBLctaZHcLVn67J59Pjx8NLtnl7fn2432SuaKqYKSithFZZYx2ziknZlZDUiNo2vK1U3TAhoG66SolCNLKCSrCS29oq0ZqiWJObJXcfpu8ZMOrBo4Pdzowwzai5lKqRQqgqoeWCujAhBuj0PvjBhIPmTB8n1Fu9TKiPE2rOddor2e4WG6QaPx6CRudhdND61DvqdvL_B_wCZJ180Q</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Horsburgh, Ben</creator><creator>Craw, Susan</creator><creator>Massie, Stewart</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</title><author>Horsburgh, Ben ; Craw, Susan ; Massie, Stewart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Expert systems</topic><topic>Hybrid representations</topic><topic>Hybrid systems</topic><topic>Music</topic><topic>Music recommendation</topic><topic>On-line systems</topic><topic>Queries</topic><topic>Recommender systems</topic><topic>Representations</topic><topic>Tags</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horsburgh, Ben</creatorcontrib><creatorcontrib>Craw, Susan</creatorcontrib><creatorcontrib>Massie, Stewart</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horsburgh, Ben</au><au>Craw, Susan</au><au>Massie, Stewart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</atitle><jtitle>Artificial intelligence</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>219</volume><spage>25</spage><epage>39</epage><pages>25-39</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2014.11.004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2015-02, Vol.219, p.25-39 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669862295 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Expert systems Hybrid representations Hybrid systems Music Music recommendation On-line systems Queries Recommender systems Representations Tags |
title | Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20pseudo-tags%20to%20augment%20sparse%20tagging%20in%20hybrid%20music%20recommender%20systems&rft.jtitle=Artificial%20intelligence&rft.au=Horsburgh,%20Ben&rft.date=2015-02-01&rft.volume=219&rft.spage=25&rft.epage=39&rft.pages=25-39&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2014.11.004&rft_dat=%3Cproquest_cross%3E1669862295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669862295&rft_id=info:pmid/&rft_els_id=S0004370214001362&rfr_iscdi=true |