Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems

Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2015-02, Vol.219, p.25-39
Hauptverfasser: Horsburgh, Ben, Craw, Susan, Massie, Stewart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 25
container_title Artificial intelligence
container_volume 219
creator Horsburgh, Ben
Craw, Susan
Massie, Stewart
description Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles.
doi_str_mv 10.1016/j.artint.2014.11.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669862295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370214001362</els_id><sourcerecordid>1669862295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw85emlN0jZtLoKI_2BBED2HJH2tWbbtmpcK--3NUs-ehvf4zcAMIdec5ZxxebvNTYh-jLlgvMw5zxkrT8iKN7XIaiX4KVmx9MqKmolzcoG4TWehFF-R9w2YMPqxp3uEuZ2yaHqkcaJm7gcYI8W9CQg0vfsj5Uf6dbDBt3SY0TsawE1DAlsIFA8YYcBLctaZHcLVn67J59Pjx8NLtnl7fn2432SuaKqYKSithFZZYx2ziknZlZDUiNo2vK1U3TAhoG66SolCNLKCSrCS29oq0ZqiWJObJXcfpu8ZMOrBo4Pdzowwzai5lKqRQqgqoeWCujAhBuj0PvjBhIPmTB8n1Fu9TKiPE2rOddor2e4WG6QaPx6CRudhdND61DvqdvL_B_wCZJ180Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669862295</pqid></control><display><type>article</type><title>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Horsburgh, Ben ; Craw, Susan ; Massie, Stewart</creator><creatorcontrib>Horsburgh, Ben ; Craw, Susan ; Massie, Stewart</creatorcontrib><description>Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2014.11.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Expert systems ; Hybrid representations ; Hybrid systems ; Music ; Music recommendation ; On-line systems ; Queries ; Recommender systems ; Representations ; Tags</subject><ispartof>Artificial intelligence, 2015-02, Vol.219, p.25-39</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</citedby><cites>FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artint.2014.11.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Horsburgh, Ben</creatorcontrib><creatorcontrib>Craw, Susan</creatorcontrib><creatorcontrib>Massie, Stewart</creatorcontrib><title>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</title><title>Artificial intelligence</title><description>Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles.</description><subject>Expert systems</subject><subject>Hybrid representations</subject><subject>Hybrid systems</subject><subject>Music</subject><subject>Music recommendation</subject><subject>On-line systems</subject><subject>Queries</subject><subject>Recommender systems</subject><subject>Representations</subject><subject>Tags</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw85emlN0jZtLoKI_2BBED2HJH2tWbbtmpcK--3NUs-ehvf4zcAMIdec5ZxxebvNTYh-jLlgvMw5zxkrT8iKN7XIaiX4KVmx9MqKmolzcoG4TWehFF-R9w2YMPqxp3uEuZ2yaHqkcaJm7gcYI8W9CQg0vfsj5Uf6dbDBt3SY0TsawE1DAlsIFA8YYcBLctaZHcLVn67J59Pjx8NLtnl7fn2432SuaKqYKSithFZZYx2ziknZlZDUiNo2vK1U3TAhoG66SolCNLKCSrCS29oq0ZqiWJObJXcfpu8ZMOrBo4Pdzowwzai5lKqRQqgqoeWCujAhBuj0PvjBhIPmTB8n1Fu9TKiPE2rOddor2e4WG6QaPx6CRudhdND61DvqdvL_B_wCZJ180Q</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Horsburgh, Ben</creator><creator>Craw, Susan</creator><creator>Massie, Stewart</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</title><author>Horsburgh, Ben ; Craw, Susan ; Massie, Stewart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9e4b6ed9babc0b9066f4eb90a27b81d5978022e78f59232865e52041b7b92da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Expert systems</topic><topic>Hybrid representations</topic><topic>Hybrid systems</topic><topic>Music</topic><topic>Music recommendation</topic><topic>On-line systems</topic><topic>Queries</topic><topic>Recommender systems</topic><topic>Representations</topic><topic>Tags</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horsburgh, Ben</creatorcontrib><creatorcontrib>Craw, Susan</creatorcontrib><creatorcontrib>Massie, Stewart</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horsburgh, Ben</au><au>Craw, Susan</au><au>Massie, Stewart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems</atitle><jtitle>Artificial intelligence</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>219</volume><spage>25</spage><epage>39</epage><pages>25-39</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Online recommender systems are an important tool that people use to find new music. To generate recommendations, many systems rely on tag representations of music. Such systems, however, suffer from tag sparsity, whereby tracks lack a strong tag representation. Current state-of-the-art techniques that reduce this sparsity problem create hybrid systems using multiple representations, for example both content and tags. In this paper we present a novel hybrid representation that augments sparse tag representations without introducing content directly. Our hybrid representation integrates pseudo-tags learned from content into the tag representation of a track, and a dynamic weighting scheme limits the number of pseudo-tags that are allowed to contribute. Experiments demonstrate that this method allows tags to remain dominant when they provide a strong representation, and pseudo-tags to take over when tags are sparse. We show that our approach significantly improves recommendation quality not only for queries with a sparse tag representation but also those that are well-tagged. Our hybrid approach has potential to be extended to other music representations that are used for recommendation but suffer from data sparsity, such as user profiles.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2014.11.004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2015-02, Vol.219, p.25-39
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_1669862295
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Expert systems
Hybrid representations
Hybrid systems
Music
Music recommendation
On-line systems
Queries
Recommender systems
Representations
Tags
title Learning pseudo-tags to augment sparse tagging in hybrid music recommender systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20pseudo-tags%20to%20augment%20sparse%20tagging%20in%20hybrid%20music%20recommender%20systems&rft.jtitle=Artificial%20intelligence&rft.au=Horsburgh,%20Ben&rft.date=2015-02-01&rft.volume=219&rft.spage=25&rft.epage=39&rft.pages=25-39&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2014.11.004&rft_dat=%3Cproquest_cross%3E1669862295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669862295&rft_id=info:pmid/&rft_els_id=S0004370214001362&rfr_iscdi=true