Probabilistic modeling of scenes using object frames
In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial r...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2015-03, Vol.58 (3), p.116-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 3 |
container_start_page | 116 |
container_title | Science China. Information sciences |
container_volume | 58 |
creator | Su, Hao Yu, Adams Wei |
description | In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval. |
doi_str_mv | 10.1007/s11432-014-5151-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669861161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663787169</cqvip_id><sourcerecordid>1669861161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWGp_gLtBN26ieZPvpRS_oKALBXchk2bqlJlJm8ws_Pemtii4MJskcO67j4PQOZBrIETeJABGS0yAYQ4cMD1CE1BCY9Cgj_NbSIYlpe-naJbSmuRDKSmlmiD2EkNlq6Zt0tC4ogtL3zb9qgh1kZzvfSrG9P2v1t4NRR1t59MZOqltm_zscE_R2_3d6_wRL54fnua3C-yoFAMWQlPLKyCilDVzUC8p99YtvVSWAJGs0sqVtqwpF1oTxlUlnatYLTjnSgo6RVf7uZsYtqNPg-mavFXb2t6HMRnIDUoACMjo5R90HcbY5-1MqUFxKTTTmYI95WJIKfrabGLT2fhpgJidSrNXabJKs1NpaM6U-0zKbL_y8Xfyf6GLQ9FH6FfbnPtpEoJKJSG7-QInPH9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918576949</pqid></control><display><type>article</type><title>Probabilistic modeling of scenes using object frames</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Su, Hao ; Yu, Adams Wei</creator><creatorcontrib>Su, Hao ; Yu, Adams Wei</creatorcontrib><description>In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-014-5151-3</identifier><language>eng</language><publisher>Heidelberg: Science China Press</publisher><subject>Allocations ; Computer Science ; Dirichlet problem ; Frames ; Information Systems and Communication Service ; Object recognition ; Probabilistic methods ; Probabilistic models ; Probability theory ; Research Paper ; Semantics ; Texts ; 使用对象 ; 场景模型 ; 对象框架 ; 帧 ; 概率模型 ; 物体识别 ; 目标检测 ; 空间关系</subject><ispartof>Science China. Information sciences, 2015-03, Vol.58 (3), p.116-128</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</citedby><cites>FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-014-5151-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918576949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,33726,41469,42538,43786,51300,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Yu, Adams Wei</creatorcontrib><title>Probabilistic modeling of scenes using object frames</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval.</description><subject>Allocations</subject><subject>Computer Science</subject><subject>Dirichlet problem</subject><subject>Frames</subject><subject>Information Systems and Communication Service</subject><subject>Object recognition</subject><subject>Probabilistic methods</subject><subject>Probabilistic models</subject><subject>Probability theory</subject><subject>Research Paper</subject><subject>Semantics</subject><subject>Texts</subject><subject>使用对象</subject><subject>场景模型</subject><subject>对象框架</subject><subject>帧</subject><subject>概率模型</subject><subject>物体识别</subject><subject>目标检测</subject><subject>空间关系</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWGp_gLtBN26ieZPvpRS_oKALBXchk2bqlJlJm8ws_Pemtii4MJskcO67j4PQOZBrIETeJABGS0yAYQ4cMD1CE1BCY9Cgj_NbSIYlpe-naJbSmuRDKSmlmiD2EkNlq6Zt0tC4ogtL3zb9qgh1kZzvfSrG9P2v1t4NRR1t59MZOqltm_zscE_R2_3d6_wRL54fnua3C-yoFAMWQlPLKyCilDVzUC8p99YtvVSWAJGs0sqVtqwpF1oTxlUlnatYLTjnSgo6RVf7uZsYtqNPg-mavFXb2t6HMRnIDUoACMjo5R90HcbY5-1MqUFxKTTTmYI95WJIKfrabGLT2fhpgJidSrNXabJKs1NpaM6U-0zKbL_y8Xfyf6GLQ9FH6FfbnPtpEoJKJSG7-QInPH9Y</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Su, Hao</creator><creator>Yu, Adams Wei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150301</creationdate><title>Probabilistic modeling of scenes using object frames</title><author>Su, Hao ; Yu, Adams Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allocations</topic><topic>Computer Science</topic><topic>Dirichlet problem</topic><topic>Frames</topic><topic>Information Systems and Communication Service</topic><topic>Object recognition</topic><topic>Probabilistic methods</topic><topic>Probabilistic models</topic><topic>Probability theory</topic><topic>Research Paper</topic><topic>Semantics</topic><topic>Texts</topic><topic>使用对象</topic><topic>场景模型</topic><topic>对象框架</topic><topic>帧</topic><topic>概率模型</topic><topic>物体识别</topic><topic>目标检测</topic><topic>空间关系</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Yu, Adams Wei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Hao</au><au>Yu, Adams Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic modeling of scenes using object frames</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>58</volume><issue>3</issue><spage>116</spage><epage>128</epage><pages>116-128</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval.</abstract><cop>Heidelberg</cop><pub>Science China Press</pub><doi>10.1007/s11432-014-5151-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2015-03, Vol.58 (3), p.116-128 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669861161 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Allocations Computer Science Dirichlet problem Frames Information Systems and Communication Service Object recognition Probabilistic methods Probabilistic models Probability theory Research Paper Semantics Texts 使用对象 场景模型 对象框架 帧 概率模型 物体识别 目标检测 空间关系 |
title | Probabilistic modeling of scenes using object frames |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20modeling%20of%20scenes%20using%20object%20frames&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Su,%20Hao&rft.date=2015-03-01&rft.volume=58&rft.issue=3&rft.spage=116&rft.epage=128&rft.pages=116-128&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-014-5151-3&rft_dat=%3Cproquest_cross%3E1669861161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918576949&rft_id=info:pmid/&rft_cqvip_id=663787169&rfr_iscdi=true |