Probabilistic modeling of scenes using object frames

In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2015-03, Vol.58 (3), p.116-128
Hauptverfasser: Su, Hao, Yu, Adams Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 3
container_start_page 116
container_title Science China. Information sciences
container_volume 58
creator Su, Hao
Yu, Adams Wei
description In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval.
doi_str_mv 10.1007/s11432-014-5151-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669861161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663787169</cqvip_id><sourcerecordid>1669861161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWGp_gLtBN26ieZPvpRS_oKALBXchk2bqlJlJm8ws_Pemtii4MJskcO67j4PQOZBrIETeJABGS0yAYQ4cMD1CE1BCY9Cgj_NbSIYlpe-naJbSmuRDKSmlmiD2EkNlq6Zt0tC4ogtL3zb9qgh1kZzvfSrG9P2v1t4NRR1t59MZOqltm_zscE_R2_3d6_wRL54fnua3C-yoFAMWQlPLKyCilDVzUC8p99YtvVSWAJGs0sqVtqwpF1oTxlUlnatYLTjnSgo6RVf7uZsYtqNPg-mavFXb2t6HMRnIDUoACMjo5R90HcbY5-1MqUFxKTTTmYI95WJIKfrabGLT2fhpgJidSrNXabJKs1NpaM6U-0zKbL_y8Xfyf6GLQ9FH6FfbnPtpEoJKJSG7-QInPH9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918576949</pqid></control><display><type>article</type><title>Probabilistic modeling of scenes using object frames</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Su, Hao ; Yu, Adams Wei</creator><creatorcontrib>Su, Hao ; Yu, Adams Wei</creatorcontrib><description>In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-014-5151-3</identifier><language>eng</language><publisher>Heidelberg: Science China Press</publisher><subject>Allocations ; Computer Science ; Dirichlet problem ; Frames ; Information Systems and Communication Service ; Object recognition ; Probabilistic methods ; Probabilistic models ; Probability theory ; Research Paper ; Semantics ; Texts ; 使用对象 ; 场景模型 ; 对象框架 ; 帧 ; 概率模型 ; 物体识别 ; 目标检测 ; 空间关系</subject><ispartof>Science China. Information sciences, 2015-03, Vol.58 (3), p.116-128</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</citedby><cites>FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-014-5151-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918576949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,33726,41469,42538,43786,51300,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Yu, Adams Wei</creatorcontrib><title>Probabilistic modeling of scenes using object frames</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval.</description><subject>Allocations</subject><subject>Computer Science</subject><subject>Dirichlet problem</subject><subject>Frames</subject><subject>Information Systems and Communication Service</subject><subject>Object recognition</subject><subject>Probabilistic methods</subject><subject>Probabilistic models</subject><subject>Probability theory</subject><subject>Research Paper</subject><subject>Semantics</subject><subject>Texts</subject><subject>使用对象</subject><subject>场景模型</subject><subject>对象框架</subject><subject>帧</subject><subject>概率模型</subject><subject>物体识别</subject><subject>目标检测</subject><subject>空间关系</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWGp_gLtBN26ieZPvpRS_oKALBXchk2bqlJlJm8ws_Pemtii4MJskcO67j4PQOZBrIETeJABGS0yAYQ4cMD1CE1BCY9Cgj_NbSIYlpe-naJbSmuRDKSmlmiD2EkNlq6Zt0tC4ogtL3zb9qgh1kZzvfSrG9P2v1t4NRR1t59MZOqltm_zscE_R2_3d6_wRL54fnua3C-yoFAMWQlPLKyCilDVzUC8p99YtvVSWAJGs0sqVtqwpF1oTxlUlnatYLTjnSgo6RVf7uZsYtqNPg-mavFXb2t6HMRnIDUoACMjo5R90HcbY5-1MqUFxKTTTmYI95WJIKfrabGLT2fhpgJidSrNXabJKs1NpaM6U-0zKbL_y8Xfyf6GLQ9FH6FfbnPtpEoJKJSG7-QInPH9Y</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Su, Hao</creator><creator>Yu, Adams Wei</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150301</creationdate><title>Probabilistic modeling of scenes using object frames</title><author>Su, Hao ; Yu, Adams Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6693a5b10627f4c1fd35eacde78a01074b98c2a2f356990458b7ccb4f65558763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allocations</topic><topic>Computer Science</topic><topic>Dirichlet problem</topic><topic>Frames</topic><topic>Information Systems and Communication Service</topic><topic>Object recognition</topic><topic>Probabilistic methods</topic><topic>Probabilistic models</topic><topic>Probability theory</topic><topic>Research Paper</topic><topic>Semantics</topic><topic>Texts</topic><topic>使用对象</topic><topic>场景模型</topic><topic>对象框架</topic><topic>帧</topic><topic>概率模型</topic><topic>物体识别</topic><topic>目标检测</topic><topic>空间关系</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Yu, Adams Wei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Hao</au><au>Yu, Adams Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic modeling of scenes using object frames</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>58</volume><issue>3</issue><spage>116</spage><epage>128</epage><pages>116-128</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>In this paper, we propose a probabilistic scene model using object frames, each of which is a group of co-occurring objects with fixed spatial relations. In contrast to standard co-occurrence models, which mostly explore the pairwise co-existence of objects, the proposed model captures the spatial relationship among groups of objects. Such information is closely tied to the semantics of the underlying scenes, which allows us to perform object detection and scene recognition in a unified framework. The proposed probabilistic model has two major components. The first models the dependencies between object frames and objects by adopting the Latent Dirichlet Allocation model for text analysis. The second component characterizes the dependencies between object frames and scenes by establishing a mapping between global image features and object frame distributions. Experimental results show that the induced object frames are both semantically meaningful and spatially consistent. In addition, our model significantly improves the performance of object recognition and scene retrieval.</abstract><cop>Heidelberg</cop><pub>Science China Press</pub><doi>10.1007/s11432-014-5151-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2015-03, Vol.58 (3), p.116-128
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_miscellaneous_1669861161
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Allocations
Computer Science
Dirichlet problem
Frames
Information Systems and Communication Service
Object recognition
Probabilistic methods
Probabilistic models
Probability theory
Research Paper
Semantics
Texts
使用对象
场景模型
对象框架

概率模型
物体识别
目标检测
空间关系
title Probabilistic modeling of scenes using object frames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20modeling%20of%20scenes%20using%20object%20frames&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Su,%20Hao&rft.date=2015-03-01&rft.volume=58&rft.issue=3&rft.spage=116&rft.epage=128&rft.pages=116-128&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-014-5151-3&rft_dat=%3Cproquest_cross%3E1669861161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918576949&rft_id=info:pmid/&rft_cqvip_id=663787169&rfr_iscdi=true