High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD

Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2014-11, Vol.50, p.55-59
Hauptverfasser: Zhu, R.H., Miao, J.Y., Liu, J.L., Chen, L.X., Guo, J.C., Hua, C.Y., Ding, T., Lian, H.K., Li, C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 55
container_title Diamond and related materials
container_volume 50
creator Zhu, R.H.
Miao, J.Y.
Liu, J.L.
Chen, L.X.
Guo, J.C.
Hua, C.Y.
Ding, T.
Lian, H.K.
Li, C.M.
description Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed. •The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K.
doi_str_mv 10.1016/j.diamond.2014.09.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669860632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963514001885</els_id><sourcerecordid>1669860632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</originalsourceid><addsrcrecordid>eNqFkE2LFDEYhIMoOK7-BCEXwUv3vvnqTk4is6u7sOBFvYZ08mY3Q3-ZZBbm39vLDF491eWpKqoI-cigZcC660MbkpuWObQcmGzBtAD9K7JjujcNQMdfkx0YrhrTCfWWvCvlAMC4kWxH4l16fKIVpxWzq8eMtD5hntxI_RZ49DU9p3qiS6QxIzalujmk-ZFeGmlM41TomnF1GQMdTvRmT132dB1dmRw9YKX73zfvyZvoxoIfLnpFfn27_bm_ax5-fL_ff31ovBS6NkH1IHnvmBgYKC26QXeCG28Gib0ySsvIgh64kyJABNlrFfgQB--jQC29uCKfz7lrXv4csVQ7peJxHN2My7FY1nVGd7CFbqg6oz4vpWSMds1pcvlkGdiXX-3BXlbal18tGLv9uvk-XSpc8W6M2c0-lX9mboAL0Grjvpw53PY-J8y2-ISzx5Ay-mrDkv7T9BfZ1pDR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669860632</pqid></control><display><type>article</type><title>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</title><source>Elsevier ScienceDirect Journals</source><creator>Zhu, R.H. ; Miao, J.Y. ; Liu, J.L. ; Chen, L.X. ; Guo, J.C. ; Hua, C.Y. ; Ding, T. ; Lian, H.K. ; Li, C.M.</creator><creatorcontrib>Zhu, R.H. ; Miao, J.Y. ; Liu, J.L. ; Chen, L.X. ; Guo, J.C. ; Hua, C.Y. ; Ding, T. ; Lian, H.K. ; Li, C.M.</creatorcontrib><description>Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed. •The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2014.09.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; DC arc plasma jet CVD ; Diamond films ; Diamonds ; Direct current ; Exact sciences and technology ; Heat transfer ; Ion and electron beam-assisted deposition; ion plating ; Laser flash technique ; Lasers ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Physical properties of thin films, nonelectronic ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma-based ion implantation and deposition ; Polished ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermal conductivity ; Thermal stability; thermal effects</subject><ispartof>Diamond and related materials, 2014-11, Vol.50, p.55-59</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</citedby><cites>FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2014.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29023085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, R.H.</creatorcontrib><creatorcontrib>Miao, J.Y.</creatorcontrib><creatorcontrib>Liu, J.L.</creatorcontrib><creatorcontrib>Chen, L.X.</creatorcontrib><creatorcontrib>Guo, J.C.</creatorcontrib><creatorcontrib>Hua, C.Y.</creatorcontrib><creatorcontrib>Ding, T.</creatorcontrib><creatorcontrib>Lian, H.K.</creatorcontrib><creatorcontrib>Li, C.M.</creatorcontrib><title>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</title><title>Diamond and related materials</title><description>Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed. •The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K.</description><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DC arc plasma jet CVD</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Direct current</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Ion and electron beam-assisted deposition; ion plating</subject><subject>Laser flash technique</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma-based ion implantation and deposition</subject><subject>Polished</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermal conductivity</subject><subject>Thermal stability; thermal effects</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEYhIMoOK7-BCEXwUv3vvnqTk4is6u7sOBFvYZ08mY3Q3-ZZBbm39vLDF491eWpKqoI-cigZcC660MbkpuWObQcmGzBtAD9K7JjujcNQMdfkx0YrhrTCfWWvCvlAMC4kWxH4l16fKIVpxWzq8eMtD5hntxI_RZ49DU9p3qiS6QxIzalujmk-ZFeGmlM41TomnF1GQMdTvRmT132dB1dmRw9YKX73zfvyZvoxoIfLnpFfn27_bm_ax5-fL_ff31ovBS6NkH1IHnvmBgYKC26QXeCG28Gib0ySsvIgh64kyJABNlrFfgQB--jQC29uCKfz7lrXv4csVQ7peJxHN2My7FY1nVGd7CFbqg6oz4vpWSMds1pcvlkGdiXX-3BXlbal18tGLv9uvk-XSpc8W6M2c0-lX9mboAL0Grjvpw53PY-J8y2-ISzx5Ay-mrDkv7T9BfZ1pDR</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Zhu, R.H.</creator><creator>Miao, J.Y.</creator><creator>Liu, J.L.</creator><creator>Chen, L.X.</creator><creator>Guo, J.C.</creator><creator>Hua, C.Y.</creator><creator>Ding, T.</creator><creator>Lian, H.K.</creator><creator>Li, C.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</title><author>Zhu, R.H. ; Miao, J.Y. ; Liu, J.L. ; Chen, L.X. ; Guo, J.C. ; Hua, C.Y. ; Ding, T. ; Lian, H.K. ; Li, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DC arc plasma jet CVD</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Direct current</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Ion and electron beam-assisted deposition; ion plating</topic><topic>Laser flash technique</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma-based ion implantation and deposition</topic><topic>Polished</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermal conductivity</topic><topic>Thermal stability; thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, R.H.</creatorcontrib><creatorcontrib>Miao, J.Y.</creatorcontrib><creatorcontrib>Liu, J.L.</creatorcontrib><creatorcontrib>Chen, L.X.</creatorcontrib><creatorcontrib>Guo, J.C.</creatorcontrib><creatorcontrib>Hua, C.Y.</creatorcontrib><creatorcontrib>Ding, T.</creatorcontrib><creatorcontrib>Lian, H.K.</creatorcontrib><creatorcontrib>Li, C.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, R.H.</au><au>Miao, J.Y.</au><au>Liu, J.L.</au><au>Chen, L.X.</au><au>Guo, J.C.</au><au>Hua, C.Y.</au><au>Ding, T.</au><au>Lian, H.K.</au><au>Li, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</atitle><jtitle>Diamond and related materials</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>50</volume><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed. •The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2014.09.007</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2014-11, Vol.50, p.55-59
issn 0925-9635
1879-0062
language eng
recordid cdi_proquest_miscellaneous_1669860632
source Elsevier ScienceDirect Journals
subjects Chemical vapor deposition
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
DC arc plasma jet CVD
Diamond films
Diamonds
Direct current
Exact sciences and technology
Heat transfer
Ion and electron beam-assisted deposition
ion plating
Laser flash technique
Lasers
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Physical properties of thin films, nonelectronic
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma applications
Plasma-based ion implantation and deposition
Polished
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thermal conductivity
Thermal stability
thermal effects
title High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20thermal%20conductivity%20of%20free-standing%20diamond%20films%20prepared%20by%20DC%20arc%20plasma%20jet%20CVD&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Zhu,%20R.H.&rft.date=2014-11-01&rft.volume=50&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2014.09.007&rft_dat=%3Cproquest_cross%3E1669860632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669860632&rft_id=info:pmid/&rft_els_id=S0925963514001885&rfr_iscdi=true