High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD
Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-p...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2014-11, Vol.50, p.55-59 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | |
container_start_page | 55 |
container_title | Diamond and related materials |
container_volume | 50 |
creator | Zhu, R.H. Miao, J.Y. Liu, J.L. Chen, L.X. Guo, J.C. Hua, C.Y. Ding, T. Lian, H.K. Li, C.M. |
description | Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed.
•The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K. |
doi_str_mv | 10.1016/j.diamond.2014.09.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669860632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963514001885</els_id><sourcerecordid>1669860632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</originalsourceid><addsrcrecordid>eNqFkE2LFDEYhIMoOK7-BCEXwUv3vvnqTk4is6u7sOBFvYZ08mY3Q3-ZZBbm39vLDF491eWpKqoI-cigZcC660MbkpuWObQcmGzBtAD9K7JjujcNQMdfkx0YrhrTCfWWvCvlAMC4kWxH4l16fKIVpxWzq8eMtD5hntxI_RZ49DU9p3qiS6QxIzalujmk-ZFeGmlM41TomnF1GQMdTvRmT132dB1dmRw9YKX73zfvyZvoxoIfLnpFfn27_bm_ax5-fL_ff31ovBS6NkH1IHnvmBgYKC26QXeCG28Gib0ySsvIgh64kyJABNlrFfgQB--jQC29uCKfz7lrXv4csVQ7peJxHN2My7FY1nVGd7CFbqg6oz4vpWSMds1pcvlkGdiXX-3BXlbal18tGLv9uvk-XSpc8W6M2c0-lX9mboAL0Grjvpw53PY-J8y2-ISzx5Ay-mrDkv7T9BfZ1pDR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669860632</pqid></control><display><type>article</type><title>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</title><source>Elsevier ScienceDirect Journals</source><creator>Zhu, R.H. ; Miao, J.Y. ; Liu, J.L. ; Chen, L.X. ; Guo, J.C. ; Hua, C.Y. ; Ding, T. ; Lian, H.K. ; Li, C.M.</creator><creatorcontrib>Zhu, R.H. ; Miao, J.Y. ; Liu, J.L. ; Chen, L.X. ; Guo, J.C. ; Hua, C.Y. ; Ding, T. ; Lian, H.K. ; Li, C.M.</creatorcontrib><description>Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed.
•The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2014.09.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; DC arc plasma jet CVD ; Diamond films ; Diamonds ; Direct current ; Exact sciences and technology ; Heat transfer ; Ion and electron beam-assisted deposition; ion plating ; Laser flash technique ; Lasers ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Physical properties of thin films, nonelectronic ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma applications ; Plasma-based ion implantation and deposition ; Polished ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermal conductivity ; Thermal stability; thermal effects</subject><ispartof>Diamond and related materials, 2014-11, Vol.50, p.55-59</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</citedby><cites>FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2014.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29023085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, R.H.</creatorcontrib><creatorcontrib>Miao, J.Y.</creatorcontrib><creatorcontrib>Liu, J.L.</creatorcontrib><creatorcontrib>Chen, L.X.</creatorcontrib><creatorcontrib>Guo, J.C.</creatorcontrib><creatorcontrib>Hua, C.Y.</creatorcontrib><creatorcontrib>Ding, T.</creatorcontrib><creatorcontrib>Lian, H.K.</creatorcontrib><creatorcontrib>Li, C.M.</creatorcontrib><title>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</title><title>Diamond and related materials</title><description>Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed.
•The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K.</description><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DC arc plasma jet CVD</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Direct current</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Ion and electron beam-assisted deposition; ion plating</subject><subject>Laser flash technique</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma applications</subject><subject>Plasma-based ion implantation and deposition</subject><subject>Polished</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermal conductivity</subject><subject>Thermal stability; thermal effects</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEYhIMoOK7-BCEXwUv3vvnqTk4is6u7sOBFvYZ08mY3Q3-ZZBbm39vLDF491eWpKqoI-cigZcC660MbkpuWObQcmGzBtAD9K7JjujcNQMdfkx0YrhrTCfWWvCvlAMC4kWxH4l16fKIVpxWzq8eMtD5hntxI_RZ49DU9p3qiS6QxIzalujmk-ZFeGmlM41TomnF1GQMdTvRmT132dB1dmRw9YKX73zfvyZvoxoIfLnpFfn27_bm_ax5-fL_ff31ovBS6NkH1IHnvmBgYKC26QXeCG28Gib0ySsvIgh64kyJABNlrFfgQB--jQC29uCKfz7lrXv4csVQ7peJxHN2My7FY1nVGd7CFbqg6oz4vpWSMds1pcvlkGdiXX-3BXlbal18tGLv9uvk-XSpc8W6M2c0-lX9mboAL0Grjvpw53PY-J8y2-ISzx5Ay-mrDkv7T9BfZ1pDR</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Zhu, R.H.</creator><creator>Miao, J.Y.</creator><creator>Liu, J.L.</creator><creator>Chen, L.X.</creator><creator>Guo, J.C.</creator><creator>Hua, C.Y.</creator><creator>Ding, T.</creator><creator>Lian, H.K.</creator><creator>Li, C.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</title><author>Zhu, R.H. ; Miao, J.Y. ; Liu, J.L. ; Chen, L.X. ; Guo, J.C. ; Hua, C.Y. ; Ding, T. ; Lian, H.K. ; Li, C.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d570427a13b105836b86329c9b4e759584f1d8b2a43d0f04785d2bfbccf3e84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DC arc plasma jet CVD</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Direct current</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Ion and electron beam-assisted deposition; ion plating</topic><topic>Laser flash technique</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma applications</topic><topic>Plasma-based ion implantation and deposition</topic><topic>Polished</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermal conductivity</topic><topic>Thermal stability; thermal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, R.H.</creatorcontrib><creatorcontrib>Miao, J.Y.</creatorcontrib><creatorcontrib>Liu, J.L.</creatorcontrib><creatorcontrib>Chen, L.X.</creatorcontrib><creatorcontrib>Guo, J.C.</creatorcontrib><creatorcontrib>Hua, C.Y.</creatorcontrib><creatorcontrib>Ding, T.</creatorcontrib><creatorcontrib>Lian, H.K.</creatorcontrib><creatorcontrib>Li, C.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, R.H.</au><au>Miao, J.Y.</au><au>Liu, J.L.</au><au>Chen, L.X.</au><au>Guo, J.C.</au><au>Hua, C.Y.</au><au>Ding, T.</au><au>Lian, H.K.</au><au>Li, C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD</atitle><jtitle>Diamond and related materials</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>50</volume><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>Free-standing diamond films with 1.68mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ⊥) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ⊥ and κ// of free-standing diamond films are up to 1916 and 1739Wm−1K−1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ~T−n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed.
•The κ//(T) and κ⊥(T) of diamond films were measured by laser flash technique.•The anisotropy in κ// and κ⊥ is 9% at 300 K, and disappears as temperature rises.•The κ// of diamond films is similar to that of single crystal diamond above 500K.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2014.09.007</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2014-11, Vol.50, p.55-59 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669860632 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical vapor deposition Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology DC arc plasma jet CVD Diamond films Diamonds Direct current Exact sciences and technology Heat transfer Ion and electron beam-assisted deposition ion plating Laser flash technique Lasers Materials science Methods of deposition of films and coatings film growth and epitaxy Physical properties of thin films, nonelectronic Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma applications Plasma-based ion implantation and deposition Polished Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thermal conductivity Thermal stability thermal effects |
title | High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20thermal%20conductivity%20of%20free-standing%20diamond%20films%20prepared%20by%20DC%20arc%20plasma%20jet%20CVD&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Zhu,%20R.H.&rft.date=2014-11-01&rft.volume=50&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2014.09.007&rft_dat=%3Cproquest_cross%3E1669860632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669860632&rft_id=info:pmid/&rft_els_id=S0925963514001885&rfr_iscdi=true |