Cellular force signal integration through vector logic gates

Abstract The multi-signal mechanical environment mammalian cells experience is often unaccounted for in current mechanical stimulation studies. To address this we developed a novel technique to induce dual integrated force inputs, uniaxial stretch and fluid shear stress and present here for the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2015-02, Vol.48 (4), p.613-620
Hauptverfasser: Steward, Robert L, Tan, Cheemeng, Cheng, Chao-Min, LeDuc, Philip R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 4
container_start_page 613
container_title Journal of biomechanics
container_volume 48
creator Steward, Robert L
Tan, Cheemeng
Cheng, Chao-Min
LeDuc, Philip R
description Abstract The multi-signal mechanical environment mammalian cells experience is often unaccounted for in current mechanical stimulation studies. To address this we developed a novel technique to induce dual integrated force inputs, uniaxial stretch and fluid shear stress and present here for the first time a vector logic-gate framework to characterize cellular response as a function of cytoskeletal reorganization. Using this framework we found that under fluid shear stress and uniaxial stretch NIH 3T3 fibroblasts responded by the Stretch OR Shear vector logic-gate and HUVECs responded by the NOT Stretch OR Shear vector logic-gate. We further developed a parsimonious model of cellular response to multiple mechanical stimuli, which provides a unifying model that captured the experimental response of both cell types.
doi_str_mv 10.1016/j.jbiomech.2014.12.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669859066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929014007155</els_id><sourcerecordid>3588199401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-efb5d514aad70dac40b94e95c432770a60a72f5b094f61eea883aff69fe91a093</originalsourceid><addsrcrecordid>eNqNkktv1DAUhS0EokPhL1SR2LBJuHb8iCWEqEY8KlXqorC2HOcm45CJi51U6r_Hw7QgdVNW3nzn-N5zLiFnFCoKVL4fq7H1YY9uVzGgvKKsAq6ekQ1tVF2yuoHnZAPAaKmZhhPyKqURABRX-iU5YUJSDho25MMWp2mdbCz6EB0WyQ-znQo_LzhEu_gwF8suhnXYFbfolhCLKQzeFYNdML0mL3o7JXxz_56SH18-f99-Ky-vvl5szy9LJwRfSuxb0QnKre0UdNZxaDVHLRyvmVJgJVjFetGC5r2kiLZpatv3UveoqQVdn5J3R9-bGH6tmBaz98nlwe2MYU2GSqkboUHK_0CFUHUmaUbfPkLHsMa8_R-KKyaoVJmSR8rFkFLE3txEv7fxzlAwhyrMaB6qMIcqDGUmV5GFZ_f2a7vH7q_sIfsMfDoCmKO79RhNch5nh52POWrTBf_0Hx8fWbjJz97Z6SfeYfq3j0lZYK4PB3G4hzwAKCpE_RuptLES</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654725167</pqid></control><display><type>article</type><title>Cellular force signal integration through vector logic gates</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Steward, Robert L ; Tan, Cheemeng ; Cheng, Chao-Min ; LeDuc, Philip R</creator><creatorcontrib>Steward, Robert L ; Tan, Cheemeng ; Cheng, Chao-Min ; LeDuc, Philip R</creatorcontrib><description>Abstract The multi-signal mechanical environment mammalian cells experience is often unaccounted for in current mechanical stimulation studies. To address this we developed a novel technique to induce dual integrated force inputs, uniaxial stretch and fluid shear stress and present here for the first time a vector logic-gate framework to characterize cellular response as a function of cytoskeletal reorganization. Using this framework we found that under fluid shear stress and uniaxial stretch NIH 3T3 fibroblasts responded by the Stretch OR Shear vector logic-gate and HUVECs responded by the NOT Stretch OR Shear vector logic-gate. We further developed a parsimonious model of cellular response to multiple mechanical stimuli, which provides a unifying model that captured the experimental response of both cell types.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2014.12.047</identifier><identifier>PMID: 25614090</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>3T3 fibroblast ; Animals ; Cell growth ; Cells, Cultured ; Cellular ; Computational fluid dynamics ; Cytoskeleton ; Cytoskeleton - physiology ; Fibroblasts - cytology ; Fibroblasts - physiology ; Fluid flow ; Fluid shear stress ; Fluids ; Humans ; HUVEC ; Mathematical analysis ; Mathematical Computing ; Mice ; Models, Biological ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - physiology ; NIH 3T3 Cells ; Physical Medicine and Rehabilitation ; Shear ; Shear Strength - physiology ; Shear stress ; Signal Transduction - physiology ; Stress, Mechanical ; Studies ; Uniaxial stretch ; Vector logic gates ; Vectors (mathematics)</subject><ispartof>Journal of biomechanics, 2015-02, Vol.48 (4), p.613-620</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-efb5d514aad70dac40b94e95c432770a60a72f5b094f61eea883aff69fe91a093</citedby><cites>FETCH-LOGICAL-c554t-efb5d514aad70dac40b94e95c432770a60a72f5b094f61eea883aff69fe91a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1654725167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25614090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steward, Robert L</creatorcontrib><creatorcontrib>Tan, Cheemeng</creatorcontrib><creatorcontrib>Cheng, Chao-Min</creatorcontrib><creatorcontrib>LeDuc, Philip R</creatorcontrib><title>Cellular force signal integration through vector logic gates</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract The multi-signal mechanical environment mammalian cells experience is often unaccounted for in current mechanical stimulation studies. To address this we developed a novel technique to induce dual integrated force inputs, uniaxial stretch and fluid shear stress and present here for the first time a vector logic-gate framework to characterize cellular response as a function of cytoskeletal reorganization. Using this framework we found that under fluid shear stress and uniaxial stretch NIH 3T3 fibroblasts responded by the Stretch OR Shear vector logic-gate and HUVECs responded by the NOT Stretch OR Shear vector logic-gate. We further developed a parsimonious model of cellular response to multiple mechanical stimuli, which provides a unifying model that captured the experimental response of both cell types.</description><subject>3T3 fibroblast</subject><subject>Animals</subject><subject>Cell growth</subject><subject>Cells, Cultured</subject><subject>Cellular</subject><subject>Computational fluid dynamics</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - physiology</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Fluid flow</subject><subject>Fluid shear stress</subject><subject>Fluids</subject><subject>Humans</subject><subject>HUVEC</subject><subject>Mathematical analysis</subject><subject>Mathematical Computing</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - physiology</subject><subject>NIH 3T3 Cells</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Shear</subject><subject>Shear Strength - physiology</subject><subject>Shear stress</subject><subject>Signal Transduction - physiology</subject><subject>Stress, Mechanical</subject><subject>Studies</subject><subject>Uniaxial stretch</subject><subject>Vector logic gates</subject><subject>Vectors (mathematics)</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktv1DAUhS0EokPhL1SR2LBJuHb8iCWEqEY8KlXqorC2HOcm45CJi51U6r_Hw7QgdVNW3nzn-N5zLiFnFCoKVL4fq7H1YY9uVzGgvKKsAq6ekQ1tVF2yuoHnZAPAaKmZhhPyKqURABRX-iU5YUJSDho25MMWp2mdbCz6EB0WyQ-znQo_LzhEu_gwF8suhnXYFbfolhCLKQzeFYNdML0mL3o7JXxz_56SH18-f99-Ky-vvl5szy9LJwRfSuxb0QnKre0UdNZxaDVHLRyvmVJgJVjFetGC5r2kiLZpatv3UveoqQVdn5J3R9-bGH6tmBaz98nlwe2MYU2GSqkboUHK_0CFUHUmaUbfPkLHsMa8_R-KKyaoVJmSR8rFkFLE3txEv7fxzlAwhyrMaB6qMIcqDGUmV5GFZ_f2a7vH7q_sIfsMfDoCmKO79RhNch5nh52POWrTBf_0Hx8fWbjJz97Z6SfeYfq3j0lZYK4PB3G4hzwAKCpE_RuptLES</recordid><startdate>20150226</startdate><enddate>20150226</enddate><creator>Steward, Robert L</creator><creator>Tan, Cheemeng</creator><creator>Cheng, Chao-Min</creator><creator>LeDuc, Philip R</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150226</creationdate><title>Cellular force signal integration through vector logic gates</title><author>Steward, Robert L ; Tan, Cheemeng ; Cheng, Chao-Min ; LeDuc, Philip R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-efb5d514aad70dac40b94e95c432770a60a72f5b094f61eea883aff69fe91a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>3T3 fibroblast</topic><topic>Animals</topic><topic>Cell growth</topic><topic>Cells, Cultured</topic><topic>Cellular</topic><topic>Computational fluid dynamics</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - physiology</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Fluid flow</topic><topic>Fluid shear stress</topic><topic>Fluids</topic><topic>Humans</topic><topic>HUVEC</topic><topic>Mathematical analysis</topic><topic>Mathematical Computing</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - physiology</topic><topic>NIH 3T3 Cells</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Shear</topic><topic>Shear Strength - physiology</topic><topic>Shear stress</topic><topic>Signal Transduction - physiology</topic><topic>Stress, Mechanical</topic><topic>Studies</topic><topic>Uniaxial stretch</topic><topic>Vector logic gates</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steward, Robert L</creatorcontrib><creatorcontrib>Tan, Cheemeng</creatorcontrib><creatorcontrib>Cheng, Chao-Min</creatorcontrib><creatorcontrib>LeDuc, Philip R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steward, Robert L</au><au>Tan, Cheemeng</au><au>Cheng, Chao-Min</au><au>LeDuc, Philip R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular force signal integration through vector logic gates</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2015-02-26</date><risdate>2015</risdate><volume>48</volume><issue>4</issue><spage>613</spage><epage>620</epage><pages>613-620</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract The multi-signal mechanical environment mammalian cells experience is often unaccounted for in current mechanical stimulation studies. To address this we developed a novel technique to induce dual integrated force inputs, uniaxial stretch and fluid shear stress and present here for the first time a vector logic-gate framework to characterize cellular response as a function of cytoskeletal reorganization. Using this framework we found that under fluid shear stress and uniaxial stretch NIH 3T3 fibroblasts responded by the Stretch OR Shear vector logic-gate and HUVECs responded by the NOT Stretch OR Shear vector logic-gate. We further developed a parsimonious model of cellular response to multiple mechanical stimuli, which provides a unifying model that captured the experimental response of both cell types.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25614090</pmid><doi>10.1016/j.jbiomech.2014.12.047</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2015-02, Vol.48 (4), p.613-620
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_1669859066
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects 3T3 fibroblast
Animals
Cell growth
Cells, Cultured
Cellular
Computational fluid dynamics
Cytoskeleton
Cytoskeleton - physiology
Fibroblasts - cytology
Fibroblasts - physiology
Fluid flow
Fluid shear stress
Fluids
Humans
HUVEC
Mathematical analysis
Mathematical Computing
Mice
Models, Biological
Muscle, Smooth, Vascular - cytology
Muscle, Smooth, Vascular - physiology
NIH 3T3 Cells
Physical Medicine and Rehabilitation
Shear
Shear Strength - physiology
Shear stress
Signal Transduction - physiology
Stress, Mechanical
Studies
Uniaxial stretch
Vector logic gates
Vectors (mathematics)
title Cellular force signal integration through vector logic gates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20force%20signal%20integration%20through%20vector%20logic%20gates&rft.jtitle=Journal%20of%20biomechanics&rft.au=Steward,%20Robert%20L&rft.date=2015-02-26&rft.volume=48&rft.issue=4&rft.spage=613&rft.epage=620&rft.pages=613-620&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2014.12.047&rft_dat=%3Cproquest_cross%3E3588199401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654725167&rft_id=info:pmid/25614090&rft_els_id=S0021929014007155&rfr_iscdi=true