The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators
We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-us...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2015-03, Vol.775, p.15-26 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 15 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 775 |
creator | Tygier, S. Appleby, R.B. Garland, J.M. Hock, K. Owen, H. Kelliher, D.J. Sheehy, S.L. |
description | We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi. |
doi_str_mv | 10.1016/j.nima.2014.11.067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669857923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900214013552</els_id><sourcerecordid>1669857923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0EEsvBH6BySZPgcTaxI9GgE1_SSVxx19BYE3uyeEnsxXaA_fd4tdRMM8U872jmYew1iBYEDG-PbfArtlLAvgVoxaCesB1oJZuxV8NTtquQbkYh5HP2IuejqDUqvWPh4Tvx-_O3Q9wmz-eEK_2O6QfH4Hipo-zXbcHiY-Bx5u4ccPWW44lS2RJxH_js_5BrZk-L47gUSqHi4dAcEjpPoXC0lhZKWGLKL9mzGZdMr_71G_b48cPD7efm7uunL7fv7xrbKVWa2XWTtHuJkxislGqiQel-0kortG7QCB0A6F7uHYIFVB0o6B3IaVK9k1N3w95c955S_LlRLmb1uZ6xYKC4ZQPDMOpejbKrqLyiNsWcE83mlKrLdDYgzEWuOZqLXHORawBMlVtD764hqk_88pRMtvVZS84nssW46P8X_wsnEYS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669857923</pqid></control><display><type>article</type><title>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</title><source>Elsevier ScienceDirect Journals</source><creator>Tygier, S. ; Appleby, R.B. ; Garland, J.M. ; Hock, K. ; Owen, H. ; Kelliher, D.J. ; Sheehy, S.L.</creator><creatorcontrib>Tygier, S. ; Appleby, R.B. ; Garland, J.M. ; Hock, K. ; Owen, H. ; Kelliher, D.J. ; Sheehy, S.L.</creatorcontrib><description>We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2014.11.067</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerator physics ; Apertures ; Computer simulation ; Detectors ; Dynamic aperture ; Dynamics ; Extensibility ; FFAG ; Medical ; Particle accelerators ; Spectrometers ; Tracking</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2015-03, Vol.775, p.15-26</ispartof><rights>2014 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</citedby><cites>FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</cites><orcidid>0000-0001-5028-2841 ; 0000-0002-7653-7205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900214013552$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tygier, S.</creatorcontrib><creatorcontrib>Appleby, R.B.</creatorcontrib><creatorcontrib>Garland, J.M.</creatorcontrib><creatorcontrib>Hock, K.</creatorcontrib><creatorcontrib>Owen, H.</creatorcontrib><creatorcontrib>Kelliher, D.J.</creatorcontrib><creatorcontrib>Sheehy, S.L.</creatorcontrib><title>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.</description><subject>Accelerator physics</subject><subject>Apertures</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Dynamic aperture</subject><subject>Dynamics</subject><subject>Extensibility</subject><subject>FFAG</subject><subject>Medical</subject><subject>Particle accelerators</subject><subject>Spectrometers</subject><subject>Tracking</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD2P1DAQhi0EEsvBH6BySZPgcTaxI9GgE1_SSVxx19BYE3uyeEnsxXaA_fd4tdRMM8U872jmYew1iBYEDG-PbfArtlLAvgVoxaCesB1oJZuxV8NTtquQbkYh5HP2IuejqDUqvWPh4Tvx-_O3Q9wmz-eEK_2O6QfH4Hipo-zXbcHiY-Bx5u4ccPWW44lS2RJxH_js_5BrZk-L47gUSqHi4dAcEjpPoXC0lhZKWGLKL9mzGZdMr_71G_b48cPD7efm7uunL7fv7xrbKVWa2XWTtHuJkxislGqiQel-0kortG7QCB0A6F7uHYIFVB0o6B3IaVK9k1N3w95c955S_LlRLmb1uZ6xYKC4ZQPDMOpejbKrqLyiNsWcE83mlKrLdDYgzEWuOZqLXHORawBMlVtD764hqk_88pRMtvVZS84nssW46P8X_wsnEYS8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Tygier, S.</creator><creator>Appleby, R.B.</creator><creator>Garland, J.M.</creator><creator>Hock, K.</creator><creator>Owen, H.</creator><creator>Kelliher, D.J.</creator><creator>Sheehy, S.L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5028-2841</orcidid><orcidid>https://orcid.org/0000-0002-7653-7205</orcidid></search><sort><creationdate>20150301</creationdate><title>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</title><author>Tygier, S. ; Appleby, R.B. ; Garland, J.M. ; Hock, K. ; Owen, H. ; Kelliher, D.J. ; Sheehy, S.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accelerator physics</topic><topic>Apertures</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Dynamic aperture</topic><topic>Dynamics</topic><topic>Extensibility</topic><topic>FFAG</topic><topic>Medical</topic><topic>Particle accelerators</topic><topic>Spectrometers</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tygier, S.</creatorcontrib><creatorcontrib>Appleby, R.B.</creatorcontrib><creatorcontrib>Garland, J.M.</creatorcontrib><creatorcontrib>Hock, K.</creatorcontrib><creatorcontrib>Owen, H.</creatorcontrib><creatorcontrib>Kelliher, D.J.</creatorcontrib><creatorcontrib>Sheehy, S.L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tygier, S.</au><au>Appleby, R.B.</au><au>Garland, J.M.</au><au>Hock, K.</au><au>Owen, H.</au><au>Kelliher, D.J.</au><au>Sheehy, S.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>775</volume><spage>15</spage><epage>26</epage><pages>15-26</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2014.11.067</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5028-2841</orcidid><orcidid>https://orcid.org/0000-0002-7653-7205</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2015-03, Vol.775, p.15-26 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669857923 |
source | Elsevier ScienceDirect Journals |
subjects | Accelerator physics Apertures Computer simulation Detectors Dynamic aperture Dynamics Extensibility FFAG Medical Particle accelerators Spectrometers Tracking |
title | The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20PyZgoubi%20framework%20and%20the%20simulation%20of%20dynamic%20aperture%20in%20fixed-field%20alternating-gradient%20accelerators&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Tygier,%20S.&rft.date=2015-03-01&rft.volume=775&rft.spage=15&rft.epage=26&rft.pages=15-26&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2014.11.067&rft_dat=%3Cproquest_cross%3E1669857923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669857923&rft_id=info:pmid/&rft_els_id=S0168900214013552&rfr_iscdi=true |