The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2015-03, Vol.775, p.15-26
Hauptverfasser: Tygier, S., Appleby, R.B., Garland, J.M., Hock, K., Owen, H., Kelliher, D.J., Sheehy, S.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue
container_start_page 15
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 775
creator Tygier, S.
Appleby, R.B.
Garland, J.M.
Hock, K.
Owen, H.
Kelliher, D.J.
Sheehy, S.L.
description We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.
doi_str_mv 10.1016/j.nima.2014.11.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669857923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900214013552</els_id><sourcerecordid>1669857923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0EEsvBH6BySZPgcTaxI9GgE1_SSVxx19BYE3uyeEnsxXaA_fd4tdRMM8U872jmYew1iBYEDG-PbfArtlLAvgVoxaCesB1oJZuxV8NTtquQbkYh5HP2IuejqDUqvWPh4Tvx-_O3Q9wmz-eEK_2O6QfH4Hipo-zXbcHiY-Bx5u4ccPWW44lS2RJxH_js_5BrZk-L47gUSqHi4dAcEjpPoXC0lhZKWGLKL9mzGZdMr_71G_b48cPD7efm7uunL7fv7xrbKVWa2XWTtHuJkxislGqiQel-0kortG7QCB0A6F7uHYIFVB0o6B3IaVK9k1N3w95c955S_LlRLmb1uZ6xYKC4ZQPDMOpejbKrqLyiNsWcE83mlKrLdDYgzEWuOZqLXHORawBMlVtD764hqk_88pRMtvVZS84nssW46P8X_wsnEYS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669857923</pqid></control><display><type>article</type><title>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</title><source>Elsevier ScienceDirect Journals</source><creator>Tygier, S. ; Appleby, R.B. ; Garland, J.M. ; Hock, K. ; Owen, H. ; Kelliher, D.J. ; Sheehy, S.L.</creator><creatorcontrib>Tygier, S. ; Appleby, R.B. ; Garland, J.M. ; Hock, K. ; Owen, H. ; Kelliher, D.J. ; Sheehy, S.L.</creatorcontrib><description>We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2014.11.067</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerator physics ; Apertures ; Computer simulation ; Detectors ; Dynamic aperture ; Dynamics ; Extensibility ; FFAG ; Medical ; Particle accelerators ; Spectrometers ; Tracking</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2015-03, Vol.775, p.15-26</ispartof><rights>2014 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</citedby><cites>FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</cites><orcidid>0000-0001-5028-2841 ; 0000-0002-7653-7205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900214013552$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tygier, S.</creatorcontrib><creatorcontrib>Appleby, R.B.</creatorcontrib><creatorcontrib>Garland, J.M.</creatorcontrib><creatorcontrib>Hock, K.</creatorcontrib><creatorcontrib>Owen, H.</creatorcontrib><creatorcontrib>Kelliher, D.J.</creatorcontrib><creatorcontrib>Sheehy, S.L.</creatorcontrib><title>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.</description><subject>Accelerator physics</subject><subject>Apertures</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Dynamic aperture</subject><subject>Dynamics</subject><subject>Extensibility</subject><subject>FFAG</subject><subject>Medical</subject><subject>Particle accelerators</subject><subject>Spectrometers</subject><subject>Tracking</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD2P1DAQhi0EEsvBH6BySZPgcTaxI9GgE1_SSVxx19BYE3uyeEnsxXaA_fd4tdRMM8U872jmYew1iBYEDG-PbfArtlLAvgVoxaCesB1oJZuxV8NTtquQbkYh5HP2IuejqDUqvWPh4Tvx-_O3Q9wmz-eEK_2O6QfH4Hipo-zXbcHiY-Bx5u4ccPWW44lS2RJxH_js_5BrZk-L47gUSqHi4dAcEjpPoXC0lhZKWGLKL9mzGZdMr_71G_b48cPD7efm7uunL7fv7xrbKVWa2XWTtHuJkxislGqiQel-0kortG7QCB0A6F7uHYIFVB0o6B3IaVK9k1N3w95c955S_LlRLmb1uZ6xYKC4ZQPDMOpejbKrqLyiNsWcE83mlKrLdDYgzEWuOZqLXHORawBMlVtD764hqk_88pRMtvVZS84nssW46P8X_wsnEYS8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Tygier, S.</creator><creator>Appleby, R.B.</creator><creator>Garland, J.M.</creator><creator>Hock, K.</creator><creator>Owen, H.</creator><creator>Kelliher, D.J.</creator><creator>Sheehy, S.L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5028-2841</orcidid><orcidid>https://orcid.org/0000-0002-7653-7205</orcidid></search><sort><creationdate>20150301</creationdate><title>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</title><author>Tygier, S. ; Appleby, R.B. ; Garland, J.M. ; Hock, K. ; Owen, H. ; Kelliher, D.J. ; Sheehy, S.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-fd3b2c42ab06c227be6785b8787acd68a131118524da1c1a731715d12bb75d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accelerator physics</topic><topic>Apertures</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Dynamic aperture</topic><topic>Dynamics</topic><topic>Extensibility</topic><topic>FFAG</topic><topic>Medical</topic><topic>Particle accelerators</topic><topic>Spectrometers</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tygier, S.</creatorcontrib><creatorcontrib>Appleby, R.B.</creatorcontrib><creatorcontrib>Garland, J.M.</creatorcontrib><creatorcontrib>Hock, K.</creatorcontrib><creatorcontrib>Owen, H.</creatorcontrib><creatorcontrib>Kelliher, D.J.</creatorcontrib><creatorcontrib>Sheehy, S.L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tygier, S.</au><au>Appleby, R.B.</au><au>Garland, J.M.</au><au>Hock, K.</au><au>Owen, H.</au><au>Kelliher, D.J.</au><au>Sheehy, S.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>775</volume><spage>15</spage><epage>26</epage><pages>15-26</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2014.11.067</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5028-2841</orcidid><orcidid>https://orcid.org/0000-0002-7653-7205</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2015-03, Vol.775, p.15-26
issn 0168-9002
1872-9576
language eng
recordid cdi_proquest_miscellaneous_1669857923
source Elsevier ScienceDirect Journals
subjects Accelerator physics
Apertures
Computer simulation
Detectors
Dynamic aperture
Dynamics
Extensibility
FFAG
Medical
Particle accelerators
Spectrometers
Tracking
title The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20PyZgoubi%20framework%20and%20the%20simulation%20of%20dynamic%20aperture%20in%20fixed-field%20alternating-gradient%20accelerators&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Tygier,%20S.&rft.date=2015-03-01&rft.volume=775&rft.spage=15&rft.epage=26&rft.pages=15-26&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2014.11.067&rft_dat=%3Cproquest_cross%3E1669857923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669857923&rft_id=info:pmid/&rft_els_id=S0168900214013552&rfr_iscdi=true