Topological entropy and renormalization group flow in 3-dimensional spherical spaces

A bstract We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3 , with constant curvature 6 /a 2 . For masses lower than 2 π β , this term can be identif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-01, Vol.2015 (1), p.1-35, Article 78
Hauptverfasser: Asorey, M., Beneventano, C. G., Cavero-Peláez, I., D’Ascanio, D., Santangelo, E. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 1
container_title The journal of high energy physics
container_volume 2015
creator Asorey, M.
Beneventano, C. G.
Cavero-Peláez, I.
D’Ascanio, D.
Santangelo, E. M.
description A bstract We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3 , with constant curvature 6 /a 2 . For masses lower than 2 π β , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol , is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S top UV  >  S top IR . From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c -theorem and the 4-dimensional a -theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.
doi_str_mv 10.1007/JHEP01(2015)078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669857630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669857630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKdnrwUv81CXNGl-HGVMpwz0MM8ha5LZ0SU1aZH515tZD0Pw9H3wPe_LxwPANYJ3CEI2fV7MXyGaFBCVt5DxEzBCsBA5J0ycHu3n4CLGLUwUEnAEVivf-sZv6ko1mXFd8O0-U05nwTgfdqqpv1RXe5dtgu_bzDb-M6tdhnNd74yL6ZJysX034achtqoy8RKcWdVEc_U7x-DtYb6aLfLly-PT7H6ZV5iTLlfcGkTXJdTEIkHSR1AVJSHWcIsLwrjGhtFCWFJUdI2xNpoZojTVFNOSCzwGk6G3Df6jN7GTuzpWpmmUM76PElEqeMkohgm9-YNufR_S84likMOipAIlajpQVfAxBmNlG-qdCnuJoDxYloNlebAsk-WUgEMiJtJtTDjq_SfyDRGLfrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708025691</pqid></control><display><type>article</type><title>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Asorey, M. ; Beneventano, C. G. ; Cavero-Peláez, I. ; D’Ascanio, D. ; Santangelo, E. M.</creator><creatorcontrib>Asorey, M. ; Beneventano, C. G. ; Cavero-Peláez, I. ; D’Ascanio, D. ; Santangelo, E. M.</creatorcontrib><description>A bstract We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3 , with constant curvature 6 /a 2 . For masses lower than 2 π β , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol , is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S top UV  &gt;  S top IR . From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c -theorem and the 4-dimensional a -theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP01(2015)078</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Constants ; Curvature ; Disks ; Elementary Particles ; Entanglement ; Entropy ; Field theory ; Free energy ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Texts ; Topology</subject><ispartof>The journal of high energy physics, 2015-01, Vol.2015 (1), p.1-35, Article 78</ispartof><rights>The Author(s) 2015</rights><rights>SISSA, Trieste, Italy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</citedby><cites>FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP01(2015)078$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP01(2015)078$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Asorey, M.</creatorcontrib><creatorcontrib>Beneventano, C. G.</creatorcontrib><creatorcontrib>Cavero-Peláez, I.</creatorcontrib><creatorcontrib>D’Ascanio, D.</creatorcontrib><creatorcontrib>Santangelo, E. M.</creatorcontrib><title>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3 , with constant curvature 6 /a 2 . For masses lower than 2 π β , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol , is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S top UV  &gt;  S top IR . From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c -theorem and the 4-dimensional a -theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.</description><subject>Classical and Quantum Gravitation</subject><subject>Constants</subject><subject>Curvature</subject><subject>Disks</subject><subject>Elementary Particles</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Field theory</subject><subject>Free energy</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Texts</subject><subject>Topology</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAYhoMoOKdnrwUv81CXNGl-HGVMpwz0MM8ha5LZ0SU1aZH515tZD0Pw9H3wPe_LxwPANYJ3CEI2fV7MXyGaFBCVt5DxEzBCsBA5J0ycHu3n4CLGLUwUEnAEVivf-sZv6ko1mXFd8O0-U05nwTgfdqqpv1RXe5dtgu_bzDb-M6tdhnNd74yL6ZJysX034achtqoy8RKcWdVEc_U7x-DtYb6aLfLly-PT7H6ZV5iTLlfcGkTXJdTEIkHSR1AVJSHWcIsLwrjGhtFCWFJUdI2xNpoZojTVFNOSCzwGk6G3Df6jN7GTuzpWpmmUM76PElEqeMkohgm9-YNufR_S84likMOipAIlajpQVfAxBmNlG-qdCnuJoDxYloNlebAsk-WUgEMiJtJtTDjq_SfyDRGLfrA</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Asorey, M.</creator><creator>Beneventano, C. G.</creator><creator>Cavero-Peláez, I.</creator><creator>D’Ascanio, D.</creator><creator>Santangelo, E. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150115</creationdate><title>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</title><author>Asorey, M. ; Beneventano, C. G. ; Cavero-Peláez, I. ; D’Ascanio, D. ; Santangelo, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Constants</topic><topic>Curvature</topic><topic>Disks</topic><topic>Elementary Particles</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Field theory</topic><topic>Free energy</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Texts</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asorey, M.</creatorcontrib><creatorcontrib>Beneventano, C. G.</creatorcontrib><creatorcontrib>Cavero-Peláez, I.</creatorcontrib><creatorcontrib>D’Ascanio, D.</creatorcontrib><creatorcontrib>Santangelo, E. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asorey, M.</au><au>Beneventano, C. G.</au><au>Cavero-Peláez, I.</au><au>D’Ascanio, D.</au><au>Santangelo, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2015-01-15</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><artnum>78</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3 , with constant curvature 6 /a 2 . For masses lower than 2 π β , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol , is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S top UV  &gt;  S top IR . From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c -theorem and the 4-dimensional a -theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP01(2015)078</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2015-01, Vol.2015 (1), p.1-35, Article 78
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1669857630
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Classical and Quantum Gravitation
Constants
Curvature
Disks
Elementary Particles
Entanglement
Entropy
Field theory
Free energy
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Texts
Topology
title Topological entropy and renormalization group flow in 3-dimensional spherical spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20entropy%20and%20renormalization%20group%20flow%20in%203-dimensional%20spherical%20spaces&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Asorey,%20M.&rft.date=2015-01-15&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.artnum=78&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP01(2015)078&rft_dat=%3Cproquest_cross%3E1669857630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708025691&rft_id=info:pmid/&rfr_iscdi=true