Topological entropy and renormalization group flow in 3-dimensional spherical spaces
A bstract We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3 , with constant curvature 6 /a 2 . For masses lower than 2 π β , this term can be identif...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2015-01, Vol.2015 (1), p.1-35, Article 78 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2015 |
creator | Asorey, M. Beneventano, C. G. Cavero-Peláez, I. D’Ascanio, D. Santangelo, E. M. |
description | A
bstract
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit
β/a
≪ 1 of a massive field theory in 3-dimensional spherical spaces,
M
3
, with constant curvature 6
/a
2
. For masses lower than
2
π
β
, this term can be identified with the free energy of the same theory on
M
3
considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy,
S
hol
, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy
S
hol
decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e.
S
top
UV
>
S
top
IR
. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional
c
-theorem and the 4-dimensional
a
-theorem. The conjecture is related to recent formulations of the
F
-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces. |
doi_str_mv | 10.1007/JHEP01(2015)078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669857630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669857630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKdnrwUv81CXNGl-HGVMpwz0MM8ha5LZ0SU1aZH515tZD0Pw9H3wPe_LxwPANYJ3CEI2fV7MXyGaFBCVt5DxEzBCsBA5J0ycHu3n4CLGLUwUEnAEVivf-sZv6ko1mXFd8O0-U05nwTgfdqqpv1RXe5dtgu_bzDb-M6tdhnNd74yL6ZJysX034achtqoy8RKcWdVEc_U7x-DtYb6aLfLly-PT7H6ZV5iTLlfcGkTXJdTEIkHSR1AVJSHWcIsLwrjGhtFCWFJUdI2xNpoZojTVFNOSCzwGk6G3Df6jN7GTuzpWpmmUM76PElEqeMkohgm9-YNufR_S84likMOipAIlajpQVfAxBmNlG-qdCnuJoDxYloNlebAsk-WUgEMiJtJtTDjq_SfyDRGLfrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708025691</pqid></control><display><type>article</type><title>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Asorey, M. ; Beneventano, C. G. ; Cavero-Peláez, I. ; D’Ascanio, D. ; Santangelo, E. M.</creator><creatorcontrib>Asorey, M. ; Beneventano, C. G. ; Cavero-Peláez, I. ; D’Ascanio, D. ; Santangelo, E. M.</creatorcontrib><description>A
bstract
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit
β/a
≪ 1 of a massive field theory in 3-dimensional spherical spaces,
M
3
, with constant curvature 6
/a
2
. For masses lower than
2
π
β
, this term can be identified with the free energy of the same theory on
M
3
considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy,
S
hol
, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy
S
hol
decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e.
S
top
UV
>
S
top
IR
. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional
c
-theorem and the 4-dimensional
a
-theorem. The conjecture is related to recent formulations of the
F
-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP01(2015)078</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Constants ; Curvature ; Disks ; Elementary Particles ; Entanglement ; Entropy ; Field theory ; Free energy ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory ; Texts ; Topology</subject><ispartof>The journal of high energy physics, 2015-01, Vol.2015 (1), p.1-35, Article 78</ispartof><rights>The Author(s) 2015</rights><rights>SISSA, Trieste, Italy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</citedby><cites>FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP01(2015)078$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP01(2015)078$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Asorey, M.</creatorcontrib><creatorcontrib>Beneventano, C. G.</creatorcontrib><creatorcontrib>Cavero-Peláez, I.</creatorcontrib><creatorcontrib>D’Ascanio, D.</creatorcontrib><creatorcontrib>Santangelo, E. M.</creatorcontrib><title>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit
β/a
≪ 1 of a massive field theory in 3-dimensional spherical spaces,
M
3
, with constant curvature 6
/a
2
. For masses lower than
2
π
β
, this term can be identified with the free energy of the same theory on
M
3
considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy,
S
hol
, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy
S
hol
decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e.
S
top
UV
>
S
top
IR
. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional
c
-theorem and the 4-dimensional
a
-theorem. The conjecture is related to recent formulations of the
F
-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.</description><subject>Classical and Quantum Gravitation</subject><subject>Constants</subject><subject>Curvature</subject><subject>Disks</subject><subject>Elementary Particles</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Field theory</subject><subject>Free energy</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Texts</subject><subject>Topology</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAYhoMoOKdnrwUv81CXNGl-HGVMpwz0MM8ha5LZ0SU1aZH515tZD0Pw9H3wPe_LxwPANYJ3CEI2fV7MXyGaFBCVt5DxEzBCsBA5J0ycHu3n4CLGLUwUEnAEVivf-sZv6ko1mXFd8O0-U05nwTgfdqqpv1RXe5dtgu_bzDb-M6tdhnNd74yL6ZJysX034achtqoy8RKcWdVEc_U7x-DtYb6aLfLly-PT7H6ZV5iTLlfcGkTXJdTEIkHSR1AVJSHWcIsLwrjGhtFCWFJUdI2xNpoZojTVFNOSCzwGk6G3Df6jN7GTuzpWpmmUM76PElEqeMkohgm9-YNufR_S84likMOipAIlajpQVfAxBmNlG-qdCnuJoDxYloNlebAsk-WUgEMiJtJtTDjq_SfyDRGLfrA</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Asorey, M.</creator><creator>Beneventano, C. G.</creator><creator>Cavero-Peláez, I.</creator><creator>D’Ascanio, D.</creator><creator>Santangelo, E. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150115</creationdate><title>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</title><author>Asorey, M. ; Beneventano, C. G. ; Cavero-Peláez, I. ; D’Ascanio, D. ; Santangelo, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a8fe16b50d4f1941510a2544fe8f32478d3e7629f42c6b33ded7e4ad6d6365893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Constants</topic><topic>Curvature</topic><topic>Disks</topic><topic>Elementary Particles</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Field theory</topic><topic>Free energy</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Texts</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asorey, M.</creatorcontrib><creatorcontrib>Beneventano, C. G.</creatorcontrib><creatorcontrib>Cavero-Peláez, I.</creatorcontrib><creatorcontrib>D’Ascanio, D.</creatorcontrib><creatorcontrib>Santangelo, E. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asorey, M.</au><au>Beneventano, C. G.</au><au>Cavero-Peláez, I.</au><au>D’Ascanio, D.</au><au>Santangelo, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological entropy and renormalization group flow in 3-dimensional spherical spaces</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2015-01-15</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><artnum>78</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit
β/a
≪ 1 of a massive field theory in 3-dimensional spherical spaces,
M
3
, with constant curvature 6
/a
2
. For masses lower than
2
π
β
, this term can be identified with the free energy of the same theory on
M
3
considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy,
S
hol
, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy
S
hol
decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e.
S
top
UV
>
S
top
IR
. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional
c
-theorem and the 4-dimensional
a
-theorem. The conjecture is related to recent formulations of the
F
-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP01(2015)078</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2015-01, Vol.2015 (1), p.1-35, Article 78 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669857630 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | Classical and Quantum Gravitation Constants Curvature Disks Elementary Particles Entanglement Entropy Field theory Free energy High energy physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Texts Topology |
title | Topological entropy and renormalization group flow in 3-dimensional spherical spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20entropy%20and%20renormalization%20group%20flow%20in%203-dimensional%20spherical%20spaces&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Asorey,%20M.&rft.date=2015-01-15&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.artnum=78&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP01(2015)078&rft_dat=%3Cproquest_cross%3E1669857630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708025691&rft_id=info:pmid/&rfr_iscdi=true |