Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells
Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacteri...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2015, Vol.273, p.697-706 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 706 |
---|---|
container_issue | |
container_start_page | 697 |
container_title | Journal of power sources |
container_volume | 273 |
creator | JIANG, Gao-Peng JING ZHANG QIAO, Jin-Li JIANG, Yong-Ming ZARRIN, Hadis ZHONGWEI CHEN FENG HONG |
description | Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm super(-1), respectively, at 30 [degrees]C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 x 10x7 cm super(2) s super(-1). Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm super(-2), respectively, which are much higher than those of pristine B1N7 at 25 [degrees]C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm super(-2) at 80 [degrees]C in DMFC, respectively. |
doi_str_mv | 10.1016/j.jpowsour.2014.09.145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669854714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660425802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d0f514f9e4920e0ae2a0051fb841db003dd1b8dbe63ec50753f171f03421a2463</originalsourceid><addsrcrecordid>eNqNUU1r3TAQFKWFvqb5C0GXQi92dvVhy8c2tGkhJJf2LGR5BX7IT65kE_Lvq0fSnnNaFmZmZ3YYu0JoEbC7PrbHNT2WtOdWAKoWhhaVfsMOaHrZiF7rt-wAsjdN32v5nn0o5QgAiD0cGH11fqM8u8hP7pQ8xbjHVOj63oU5nbhPy5rKvBFfaBmzO1HhIWUe0yPfaFkpu23PxNcUnxbKnCL5LdelMsJOkZ8Vy0f2LrhY6PJlXrDf37_9uvnR3D3c_rz5ctd4aczWTBA0qjCQGgQQOBIOQGMYjcJpBJDThKOZRuokeQ01TcAeA0gl0AnVyQv2-Vl3zenPTmWzy1zODqrvtBeLXTcYrXpUr4GCEtqAqNDuGepzKiVTsGueF5efLII9V2CP9l8F9lyBhcHWCirx08sNV7yLob7Pz-U_W5hB1nhS_gXO8ovr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660425802</pqid></control><display><type>article</type><title>Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>JIANG, Gao-Peng ; JING ZHANG ; QIAO, Jin-Li ; JIANG, Yong-Ming ; ZARRIN, Hadis ; ZHONGWEI CHEN ; FENG HONG</creator><creatorcontrib>JIANG, Gao-Peng ; JING ZHANG ; QIAO, Jin-Li ; JIANG, Yong-Ming ; ZARRIN, Hadis ; ZHONGWEI CHEN ; FENG HONG</creatorcontrib><description>Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm super(-1), respectively, at 30 [degrees]C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 x 10x7 cm super(2) s super(-1). Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm super(-2), respectively, which are much higher than those of pristine B1N7 at 25 [degrees]C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm super(-2) at 80 [degrees]C in DMFC, respectively.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.09.145</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Annealing ; Applied sciences ; Bacteria ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Membranes ; Methyl alcohol ; Nanostructure ; Permeability ; Reinforcing steels ; Uptakes</subject><ispartof>Journal of power sources, 2015, Vol.273, p.697-706</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d0f514f9e4920e0ae2a0051fb841db003dd1b8dbe63ec50753f171f03421a2463</citedby><cites>FETCH-LOGICAL-c388t-d0f514f9e4920e0ae2a0051fb841db003dd1b8dbe63ec50753f171f03421a2463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28930513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JIANG, Gao-Peng</creatorcontrib><creatorcontrib>JING ZHANG</creatorcontrib><creatorcontrib>QIAO, Jin-Li</creatorcontrib><creatorcontrib>JIANG, Yong-Ming</creatorcontrib><creatorcontrib>ZARRIN, Hadis</creatorcontrib><creatorcontrib>ZHONGWEI CHEN</creatorcontrib><creatorcontrib>FENG HONG</creatorcontrib><title>Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells</title><title>Journal of power sources</title><description>Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm super(-1), respectively, at 30 [degrees]C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 x 10x7 cm super(2) s super(-1). Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm super(-2), respectively, which are much higher than those of pristine B1N7 at 25 [degrees]C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm super(-2) at 80 [degrees]C in DMFC, respectively.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Membranes</subject><subject>Methyl alcohol</subject><subject>Nanostructure</subject><subject>Permeability</subject><subject>Reinforcing steels</subject><subject>Uptakes</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU1r3TAQFKWFvqb5C0GXQi92dvVhy8c2tGkhJJf2LGR5BX7IT65kE_Lvq0fSnnNaFmZmZ3YYu0JoEbC7PrbHNT2WtOdWAKoWhhaVfsMOaHrZiF7rt-wAsjdN32v5nn0o5QgAiD0cGH11fqM8u8hP7pQ8xbjHVOj63oU5nbhPy5rKvBFfaBmzO1HhIWUe0yPfaFkpu23PxNcUnxbKnCL5LdelMsJOkZ8Vy0f2LrhY6PJlXrDf37_9uvnR3D3c_rz5ctd4aczWTBA0qjCQGgQQOBIOQGMYjcJpBJDThKOZRuokeQ01TcAeA0gl0AnVyQv2-Vl3zenPTmWzy1zODqrvtBeLXTcYrXpUr4GCEtqAqNDuGepzKiVTsGueF5efLII9V2CP9l8F9lyBhcHWCirx08sNV7yLob7Pz-U_W5hB1nhS_gXO8ovr</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>JIANG, Gao-Peng</creator><creator>JING ZHANG</creator><creator>QIAO, Jin-Li</creator><creator>JIANG, Yong-Ming</creator><creator>ZARRIN, Hadis</creator><creator>ZHONGWEI CHEN</creator><creator>FENG HONG</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2015</creationdate><title>Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells</title><author>JIANG, Gao-Peng ; JING ZHANG ; QIAO, Jin-Li ; JIANG, Yong-Ming ; ZARRIN, Hadis ; ZHONGWEI CHEN ; FENG HONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d0f514f9e4920e0ae2a0051fb841db003dd1b8dbe63ec50753f171f03421a2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Membranes</topic><topic>Methyl alcohol</topic><topic>Nanostructure</topic><topic>Permeability</topic><topic>Reinforcing steels</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, Gao-Peng</creatorcontrib><creatorcontrib>JING ZHANG</creatorcontrib><creatorcontrib>QIAO, Jin-Li</creatorcontrib><creatorcontrib>JIANG, Yong-Ming</creatorcontrib><creatorcontrib>ZARRIN, Hadis</creatorcontrib><creatorcontrib>ZHONGWEI CHEN</creatorcontrib><creatorcontrib>FENG HONG</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, Gao-Peng</au><au>JING ZHANG</au><au>QIAO, Jin-Li</au><au>JIANG, Yong-Ming</au><au>ZARRIN, Hadis</au><au>ZHONGWEI CHEN</au><au>FENG HONG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2015</date><risdate>2015</risdate><volume>273</volume><spage>697</spage><epage>706</epage><pages>697-706</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm super(-1), respectively, at 30 [degrees]C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 x 10x7 cm super(2) s super(-1). Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm super(-2), respectively, which are much higher than those of pristine B1N7 at 25 [degrees]C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm super(-2) at 80 [degrees]C in DMFC, respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2014.09.145</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2015, Vol.273, p.697-706 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669854714 |
source | Elsevier ScienceDirect Journals |
subjects | Annealing Applied sciences Bacteria Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Membranes Methyl alcohol Nanostructure Permeability Reinforcing steels Uptakes |
title | Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20nanocellulose/Nafion%20composite%20membranes%20for%20low%20temperature%20polymer%20electrolyte%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=JIANG,%20Gao-Peng&rft.date=2015&rft.volume=273&rft.spage=697&rft.epage=706&rft.pages=697-706&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.09.145&rft_dat=%3Cproquest_cross%3E1660425802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660425802&rft_id=info:pmid/&rfr_iscdi=true |