Vehicle to Vehicle GeoNetworking using Wireless Sensor Networks
Vehicular communications will be the next quality step in the development of automotive technologies. Defining these communications is currently in the final step of development, the focus being on standardization and field tests of network devices and Advanced Driver Assistance Systems. However, so...
Gespeichert in:
Veröffentlicht in: | Ad hoc networks 2015-04, Vol.27, p.133-146 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vehicular communications will be the next quality step in the development of automotive technologies. Defining these communications is currently in the final step of development, the focus being on standardization and field tests of network devices and Advanced Driver Assistance Systems. However, some issues regarding vehicular communications that require a specific research effort are still open and represent a challenge if the technology is to be ultimately implemented and marketed. One of these challenges is to develop effective GeoNetworking in vehicular communications. This concept means that the Vehicle Ad-hoc NETwork (VANET) data package transmission is organized according to the topographical location of the different network nodes (vehicles), with the data flow being organized optimally so as to cover the surroundings of each vehicle. The core of this GeoNetworking system is the GeoRouting algorithm that supports the optimal routing of the data packages and reorganizes the network structure in accordance with the positions of the nodes. In this paper we present a novel GeoRouting algorithm for unicast communications, based on the evolution of the previous results of vehicular mesh networks using IEEE 802.15.4 Wireless Sensor Networks (WSN) technology. This algorithm has been designed, implemented and validated under controlled conditions and tested in real vehicles on real roads with free-flow traffic. The results suggest that the features of this routing algorithm can be inserted into any vehicular architecture to provide functioning GeoNetworking that will support a wide range of Advanced Driving Assistance System (ADAS) applications. |
---|---|
ISSN: | 1570-8705 1570-8713 |
DOI: | 10.1016/j.adhoc.2014.12.003 |