Ferroelectric polarization reversal via successive ferroelastic transitions

Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2015-01, Vol.14 (1), p.79-86
Hauptverfasser: Xu, Ruijuan, Liu, Shi, Grinberg, Ilya, Karthik, J., Damodaran, Anoop R., Rappe, Andrew M., Martin, Lane W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 79
container_title Nature materials
container_volume 14
creator Xu, Ruijuan
Liu, Shi
Grinberg, Ilya
Karthik, J.
Damodaran, Anoop R.
Rappe, Andrew M.
Martin, Lane W.
description Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr 0.2 Ti 0.8 O 3 thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed. Ferroelectric switching is studied in PbZr 0.2 Ti 0.8 O 3 thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated.
doi_str_mv 10.1038/nmat4119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669853515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563877411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgiptT8C-Qghc9VPOaH02OMpyKAy96Lm9pKhldO5N2oH-9GdtUdvKUQD7vm5c8Qs6B3gBl6rZZYMcB9AEZAs9lyqWkh9s9QJYNyEkIc0ozEEIek0EmGOe54kPyPLHet7a2pvPOJMu2Ru--sHNtk3i7sj5gnawcJqE3xobgVjapNiUYuljReWyCW_twSo4qrIM9264j8ja5fx0_ptOXh6fx3TQ1nKsuRVVhppViSmpQQmngpaIyK5kRVCOjStIcbCXMDEtNaeyVlWg1akA9w4yNyNUmd-nbj96Grli4YGxdY2PbPhQgpVaCCRD_oCzXWuQKIr3co_O29018SFQ8B2CK099A49sQvK2KpXcL9J8F0GI9i2I3i0gvtoH9bGHLH7j7_AiuNyDEo-bd-j837od9A3LvkfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647113840</pqid></control><display><type>article</type><title>Ferroelectric polarization reversal via successive ferroelastic transitions</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Xu, Ruijuan ; Liu, Shi ; Grinberg, Ilya ; Karthik, J. ; Damodaran, Anoop R. ; Rappe, Andrew M. ; Martin, Lane W.</creator><creatorcontrib>Xu, Ruijuan ; Liu, Shi ; Grinberg, Ilya ; Karthik, J. ; Damodaran, Anoop R. ; Rappe, Andrew M. ; Martin, Lane W.</creatorcontrib><description>Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr 0.2 Ti 0.8 O 3 thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed. Ferroelectric switching is studied in PbZr 0.2 Ti 0.8 O 3 thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4119</identifier><identifier>PMID: 25344784</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/119 ; Biomaterials ; Condensed Matter Physics ; Devices ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Materials Science ; Molecular dynamics ; Molecular structure ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Phase transitions ; Polarization ; Simulation ; Switching ; Thin films</subject><ispartof>Nature materials, 2015-01, Vol.14 (1), p.79-86</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</citedby><cites>FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25344784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ruijuan</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Karthik, J.</creatorcontrib><creatorcontrib>Damodaran, Anoop R.</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><title>Ferroelectric polarization reversal via successive ferroelastic transitions</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr 0.2 Ti 0.8 O 3 thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed. Ferroelectric switching is studied in PbZr 0.2 Ti 0.8 O 3 thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated.</description><subject>639/301/1005/1007</subject><subject>639/301/119</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Polarization</subject><subject>Simulation</subject><subject>Switching</subject><subject>Thin films</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0c9LwzAUB_AgiptT8C-Qghc9VPOaH02OMpyKAy96Lm9pKhldO5N2oH-9GdtUdvKUQD7vm5c8Qs6B3gBl6rZZYMcB9AEZAs9lyqWkh9s9QJYNyEkIc0ozEEIek0EmGOe54kPyPLHet7a2pvPOJMu2Ru--sHNtk3i7sj5gnawcJqE3xobgVjapNiUYuljReWyCW_twSo4qrIM9264j8ja5fx0_ptOXh6fx3TQ1nKsuRVVhppViSmpQQmngpaIyK5kRVCOjStIcbCXMDEtNaeyVlWg1akA9w4yNyNUmd-nbj96Grli4YGxdY2PbPhQgpVaCCRD_oCzXWuQKIr3co_O29018SFQ8B2CK099A49sQvK2KpXcL9J8F0GI9i2I3i0gvtoH9bGHLH7j7_AiuNyDEo-bd-j837od9A3LvkfM</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Xu, Ruijuan</creator><creator>Liu, Shi</creator><creator>Grinberg, Ilya</creator><creator>Karthik, J.</creator><creator>Damodaran, Anoop R.</creator><creator>Rappe, Andrew M.</creator><creator>Martin, Lane W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Ferroelectric polarization reversal via successive ferroelastic transitions</title><author>Xu, Ruijuan ; Liu, Shi ; Grinberg, Ilya ; Karthik, J. ; Damodaran, Anoop R. ; Rappe, Andrew M. ; Martin, Lane W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/1005/1007</topic><topic>639/301/119</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Polarization</topic><topic>Simulation</topic><topic>Switching</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ruijuan</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Karthik, J.</creatorcontrib><creatorcontrib>Damodaran, Anoop R.</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ruijuan</au><au>Liu, Shi</au><au>Grinberg, Ilya</au><au>Karthik, J.</au><au>Damodaran, Anoop R.</au><au>Rappe, Andrew M.</au><au>Martin, Lane W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric polarization reversal via successive ferroelastic transitions</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>79</spage><epage>86</epage><pages>79-86</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr 0.2 Ti 0.8 O 3 thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed. Ferroelectric switching is studied in PbZr 0.2 Ti 0.8 O 3 thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25344784</pmid><doi>10.1038/nmat4119</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2015-01, Vol.14 (1), p.79-86
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1669853515
source Nature; Alma/SFX Local Collection
subjects 639/301/1005/1007
639/301/119
Biomaterials
Condensed Matter Physics
Devices
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Materials Science
Molecular dynamics
Molecular structure
Nanomaterials
Nanostructure
Nanotechnology
Optical and Electronic Materials
Phase transitions
Polarization
Simulation
Switching
Thin films
title Ferroelectric polarization reversal via successive ferroelastic transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20polarization%20reversal%20via%20successive%20ferroelastic%20transitions&rft.jtitle=Nature%20materials&rft.au=Xu,%20Ruijuan&rft.date=2015-01-01&rft.volume=14&rft.issue=1&rft.spage=79&rft.epage=86&rft.pages=79-86&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4119&rft_dat=%3Cproquest_cross%3E3563877411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647113840&rft_id=info:pmid/25344784&rfr_iscdi=true