Ferroelectric polarization reversal via successive ferroelastic transitions
Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain str...
Gespeichert in:
Veröffentlicht in: | Nature materials 2015-01, Vol.14 (1), p.79-86 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Nature materials |
container_volume | 14 |
creator | Xu, Ruijuan Liu, Shi Grinberg, Ilya Karthik, J. Damodaran, Anoop R. Rappe, Andrew M. Martin, Lane W. |
description | Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr
0.2
Ti
0.8
O
3
thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed.
Ferroelectric switching is studied in PbZr
0.2
Ti
0.8
O
3
thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated. |
doi_str_mv | 10.1038/nmat4119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669853515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563877411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgiptT8C-Qghc9VPOaH02OMpyKAy96Lm9pKhldO5N2oH-9GdtUdvKUQD7vm5c8Qs6B3gBl6rZZYMcB9AEZAs9lyqWkh9s9QJYNyEkIc0ozEEIek0EmGOe54kPyPLHet7a2pvPOJMu2Ru--sHNtk3i7sj5gnawcJqE3xobgVjapNiUYuljReWyCW_twSo4qrIM9264j8ja5fx0_ptOXh6fx3TQ1nKsuRVVhppViSmpQQmngpaIyK5kRVCOjStIcbCXMDEtNaeyVlWg1akA9w4yNyNUmd-nbj96Grli4YGxdY2PbPhQgpVaCCRD_oCzXWuQKIr3co_O29018SFQ8B2CK099A49sQvK2KpXcL9J8F0GI9i2I3i0gvtoH9bGHLH7j7_AiuNyDEo-bd-j837od9A3LvkfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647113840</pqid></control><display><type>article</type><title>Ferroelectric polarization reversal via successive ferroelastic transitions</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Xu, Ruijuan ; Liu, Shi ; Grinberg, Ilya ; Karthik, J. ; Damodaran, Anoop R. ; Rappe, Andrew M. ; Martin, Lane W.</creator><creatorcontrib>Xu, Ruijuan ; Liu, Shi ; Grinberg, Ilya ; Karthik, J. ; Damodaran, Anoop R. ; Rappe, Andrew M. ; Martin, Lane W.</creatorcontrib><description>Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr
0.2
Ti
0.8
O
3
thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed.
Ferroelectric switching is studied in PbZr
0.2
Ti
0.8
O
3
thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4119</identifier><identifier>PMID: 25344784</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/119 ; Biomaterials ; Condensed Matter Physics ; Devices ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Materials Science ; Molecular dynamics ; Molecular structure ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Phase transitions ; Polarization ; Simulation ; Switching ; Thin films</subject><ispartof>Nature materials, 2015-01, Vol.14 (1), p.79-86</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</citedby><cites>FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25344784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Ruijuan</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Karthik, J.</creatorcontrib><creatorcontrib>Damodaran, Anoop R.</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><title>Ferroelectric polarization reversal via successive ferroelastic transitions</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr
0.2
Ti
0.8
O
3
thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed.
Ferroelectric switching is studied in PbZr
0.2
Ti
0.8
O
3
thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated.</description><subject>639/301/1005/1007</subject><subject>639/301/119</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Polarization</subject><subject>Simulation</subject><subject>Switching</subject><subject>Thin films</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0c9LwzAUB_AgiptT8C-Qghc9VPOaH02OMpyKAy96Lm9pKhldO5N2oH-9GdtUdvKUQD7vm5c8Qs6B3gBl6rZZYMcB9AEZAs9lyqWkh9s9QJYNyEkIc0ozEEIek0EmGOe54kPyPLHet7a2pvPOJMu2Ru--sHNtk3i7sj5gnawcJqE3xobgVjapNiUYuljReWyCW_twSo4qrIM9264j8ja5fx0_ptOXh6fx3TQ1nKsuRVVhppViSmpQQmngpaIyK5kRVCOjStIcbCXMDEtNaeyVlWg1akA9w4yNyNUmd-nbj96Grli4YGxdY2PbPhQgpVaCCRD_oCzXWuQKIr3co_O29018SFQ8B2CK099A49sQvK2KpXcL9J8F0GI9i2I3i0gvtoH9bGHLH7j7_AiuNyDEo-bd-j837od9A3LvkfM</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Xu, Ruijuan</creator><creator>Liu, Shi</creator><creator>Grinberg, Ilya</creator><creator>Karthik, J.</creator><creator>Damodaran, Anoop R.</creator><creator>Rappe, Andrew M.</creator><creator>Martin, Lane W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Ferroelectric polarization reversal via successive ferroelastic transitions</title><author>Xu, Ruijuan ; Liu, Shi ; Grinberg, Ilya ; Karthik, J. ; Damodaran, Anoop R. ; Rappe, Andrew M. ; Martin, Lane W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a8fa298838691858914d8062d3c509a3086071ef5cbad9005343dae9a91a9ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/1005/1007</topic><topic>639/301/119</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Polarization</topic><topic>Simulation</topic><topic>Switching</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ruijuan</creatorcontrib><creatorcontrib>Liu, Shi</creatorcontrib><creatorcontrib>Grinberg, Ilya</creatorcontrib><creatorcontrib>Karthik, J.</creatorcontrib><creatorcontrib>Damodaran, Anoop R.</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ruijuan</au><au>Liu, Shi</au><au>Grinberg, Ilya</au><au>Karthik, J.</au><au>Damodaran, Anoop R.</au><au>Rappe, Andrew M.</au><au>Martin, Lane W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric polarization reversal via successive ferroelastic transitions</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>79</spage><epage>86</epage><pages>79-86</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr
0.2
Ti
0.8
O
3
thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed.
Ferroelectric switching is studied in PbZr
0.2
Ti
0.8
O
3
thin films. Nanotwinned ferroelectric domains with broadened switching characteristics are observed and control over ferroelectric switching is demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25344784</pmid><doi>10.1038/nmat4119</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2015-01, Vol.14 (1), p.79-86 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669853515 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/1005/1007 639/301/119 Biomaterials Condensed Matter Physics Devices Ferroelectric materials Ferroelectricity Ferroelectrics Materials Science Molecular dynamics Molecular structure Nanomaterials Nanostructure Nanotechnology Optical and Electronic Materials Phase transitions Polarization Simulation Switching Thin films |
title | Ferroelectric polarization reversal via successive ferroelastic transitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20polarization%20reversal%20via%20successive%20ferroelastic%20transitions&rft.jtitle=Nature%20materials&rft.au=Xu,%20Ruijuan&rft.date=2015-01-01&rft.volume=14&rft.issue=1&rft.spage=79&rft.epage=86&rft.pages=79-86&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4119&rft_dat=%3Cproquest_cross%3E3563877411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647113840&rft_id=info:pmid/25344784&rfr_iscdi=true |