The effect of thermal stratification on HCCI combustion: A numerical investigation

•Heat transfer offsets temperature stratification effects on combustion duration.•The adiabatic assumption increases the combustion duration.•Engine speed affects the thermal boundary layer in multi-zone simulation. The present study focuses on a numerical investigation of thermal stratification in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2015-02, Vol.139, p.291-302
1. Verfasser: Komninos, N.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue
container_start_page 291
container_title Applied energy
container_volume 139
creator Komninos, N.P.
description •Heat transfer offsets temperature stratification effects on combustion duration.•The adiabatic assumption increases the combustion duration.•Engine speed affects the thermal boundary layer in multi-zone simulation. The present study focuses on a numerical investigation of thermal stratification in HCCI combustion. The simulation is conducted with a multi-zone model, which incorporates heat and mass transfer between zones and to the combustion chamber walls. The multi-zone model is used to study the effect of three different initial thermal stratifications on the combustion duration and the pressure rise rate, while considering heat transfer effects. Subsequently, the assumption of adiabatic zones and combustion chamber is applied in the model, while maintaining the initial thermal stratifications. The results obtained are compared to the ones in which heat transfer is included, thereby elucidating the consequences of the adiabatic assumption when examining thermal stratification effects on HCCI combustion. An investigation is also conducted to determine the effect of engine speed on the thermal stratification of the charge, for the closed part of the engine cycle. Since engine speed directly affects the time available for all rate processes, including heat transfer and combustion, the investigation is conducted under motoring conditions. Lastly, the effect of wall temperature on the thermal stratification of an originally homogeneous mixture is examined under firing conditions, for the closed part of the engine cycle.
doi_str_mv 10.1016/j.apenergy.2014.10.089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669852891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261914011581</els_id><sourcerecordid>1669852891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-420560f7d98a65cf685a48968e16bd8cacc27209bb4dea58cb06ab041a95e9b73</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKt_QXL0snWS7mYTT5aiVigIUs8hm51tU_ajJttC_71Zq2eFIQMvz8yQh5BbBhMGTNxvJ2aHLfr1ccKBpTGcgFRnZMRkzhPFmDwnI5iCSLhg6pJchbAFAM44jMj7aoMUqwptT7uK9hv0jalp6L3pXeVsfLuWxlrM56_Udk2xD0P0QGe03TfoI1JT1x4wxutv-ppcVKYOePPTx-Tj-Wk1XyTLt5fX-WyZ2Gku-yTlkAmo8lJJIzJbCZmZVCohkYmilNZYy3MOqijSEk0mbQHCFJAyozJURT4dk7vT3p3vPvfxvm5csFjXpsVuHzQTQsmMS8X-g0I6zYENqDih1ncheKz0zrvG-KNmoAffeqt_fevB95BH33Hw8TSI8c8Hh14H67C1WDof7eqyc3-t-AJtWYy5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660437011</pqid></control><display><type>article</type><title>The effect of thermal stratification on HCCI combustion: A numerical investigation</title><source>Elsevier ScienceDirect Journals</source><creator>Komninos, N.P.</creator><creatorcontrib>Komninos, N.P.</creatorcontrib><description>•Heat transfer offsets temperature stratification effects on combustion duration.•The adiabatic assumption increases the combustion duration.•Engine speed affects the thermal boundary layer in multi-zone simulation. The present study focuses on a numerical investigation of thermal stratification in HCCI combustion. The simulation is conducted with a multi-zone model, which incorporates heat and mass transfer between zones and to the combustion chamber walls. The multi-zone model is used to study the effect of three different initial thermal stratifications on the combustion duration and the pressure rise rate, while considering heat transfer effects. Subsequently, the assumption of adiabatic zones and combustion chamber is applied in the model, while maintaining the initial thermal stratifications. The results obtained are compared to the ones in which heat transfer is included, thereby elucidating the consequences of the adiabatic assumption when examining thermal stratification effects on HCCI combustion. An investigation is also conducted to determine the effect of engine speed on the thermal stratification of the charge, for the closed part of the engine cycle. Since engine speed directly affects the time available for all rate processes, including heat transfer and combustion, the investigation is conducted under motoring conditions. Lastly, the effect of wall temperature on the thermal stratification of an originally homogeneous mixture is examined under firing conditions, for the closed part of the engine cycle.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2014.10.089</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adiabatic assumption ; Adiabatic flow ; Combustion ; Combustion chambers ; Combustion duration ; Engines ; HCCI ; Heat transfer ; Mathematical models ; Multi-zone model ; Stratification ; Thermal stratification ; Wall temperature ; Walls</subject><ispartof>Applied energy, 2015-02, Vol.139, p.291-302</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-420560f7d98a65cf685a48968e16bd8cacc27209bb4dea58cb06ab041a95e9b73</citedby><cites>FETCH-LOGICAL-c378t-420560f7d98a65cf685a48968e16bd8cacc27209bb4dea58cb06ab041a95e9b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261914011581$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Komninos, N.P.</creatorcontrib><title>The effect of thermal stratification on HCCI combustion: A numerical investigation</title><title>Applied energy</title><description>•Heat transfer offsets temperature stratification effects on combustion duration.•The adiabatic assumption increases the combustion duration.•Engine speed affects the thermal boundary layer in multi-zone simulation. The present study focuses on a numerical investigation of thermal stratification in HCCI combustion. The simulation is conducted with a multi-zone model, which incorporates heat and mass transfer between zones and to the combustion chamber walls. The multi-zone model is used to study the effect of three different initial thermal stratifications on the combustion duration and the pressure rise rate, while considering heat transfer effects. Subsequently, the assumption of adiabatic zones and combustion chamber is applied in the model, while maintaining the initial thermal stratifications. The results obtained are compared to the ones in which heat transfer is included, thereby elucidating the consequences of the adiabatic assumption when examining thermal stratification effects on HCCI combustion. An investigation is also conducted to determine the effect of engine speed on the thermal stratification of the charge, for the closed part of the engine cycle. Since engine speed directly affects the time available for all rate processes, including heat transfer and combustion, the investigation is conducted under motoring conditions. Lastly, the effect of wall temperature on the thermal stratification of an originally homogeneous mixture is examined under firing conditions, for the closed part of the engine cycle.</description><subject>Adiabatic assumption</subject><subject>Adiabatic flow</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Combustion duration</subject><subject>Engines</subject><subject>HCCI</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Multi-zone model</subject><subject>Stratification</subject><subject>Thermal stratification</subject><subject>Wall temperature</subject><subject>Walls</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKt_QXL0snWS7mYTT5aiVigIUs8hm51tU_ajJttC_71Zq2eFIQMvz8yQh5BbBhMGTNxvJ2aHLfr1ccKBpTGcgFRnZMRkzhPFmDwnI5iCSLhg6pJchbAFAM44jMj7aoMUqwptT7uK9hv0jalp6L3pXeVsfLuWxlrM56_Udk2xD0P0QGe03TfoI1JT1x4wxutv-ppcVKYOePPTx-Tj-Wk1XyTLt5fX-WyZ2Gku-yTlkAmo8lJJIzJbCZmZVCohkYmilNZYy3MOqijSEk0mbQHCFJAyozJURT4dk7vT3p3vPvfxvm5csFjXpsVuHzQTQsmMS8X-g0I6zYENqDih1ncheKz0zrvG-KNmoAffeqt_fevB95BH33Hw8TSI8c8Hh14H67C1WDof7eqyc3-t-AJtWYy5</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Komninos, N.P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TA</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20150201</creationdate><title>The effect of thermal stratification on HCCI combustion: A numerical investigation</title><author>Komninos, N.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-420560f7d98a65cf685a48968e16bd8cacc27209bb4dea58cb06ab041a95e9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adiabatic assumption</topic><topic>Adiabatic flow</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Combustion duration</topic><topic>Engines</topic><topic>HCCI</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Multi-zone model</topic><topic>Stratification</topic><topic>Thermal stratification</topic><topic>Wall temperature</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komninos, N.P.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komninos, N.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of thermal stratification on HCCI combustion: A numerical investigation</atitle><jtitle>Applied energy</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>139</volume><spage>291</spage><epage>302</epage><pages>291-302</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>•Heat transfer offsets temperature stratification effects on combustion duration.•The adiabatic assumption increases the combustion duration.•Engine speed affects the thermal boundary layer in multi-zone simulation. The present study focuses on a numerical investigation of thermal stratification in HCCI combustion. The simulation is conducted with a multi-zone model, which incorporates heat and mass transfer between zones and to the combustion chamber walls. The multi-zone model is used to study the effect of three different initial thermal stratifications on the combustion duration and the pressure rise rate, while considering heat transfer effects. Subsequently, the assumption of adiabatic zones and combustion chamber is applied in the model, while maintaining the initial thermal stratifications. The results obtained are compared to the ones in which heat transfer is included, thereby elucidating the consequences of the adiabatic assumption when examining thermal stratification effects on HCCI combustion. An investigation is also conducted to determine the effect of engine speed on the thermal stratification of the charge, for the closed part of the engine cycle. Since engine speed directly affects the time available for all rate processes, including heat transfer and combustion, the investigation is conducted under motoring conditions. Lastly, the effect of wall temperature on the thermal stratification of an originally homogeneous mixture is examined under firing conditions, for the closed part of the engine cycle.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2014.10.089</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2015-02, Vol.139, p.291-302
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_1669852891
source Elsevier ScienceDirect Journals
subjects Adiabatic assumption
Adiabatic flow
Combustion
Combustion chambers
Combustion duration
Engines
HCCI
Heat transfer
Mathematical models
Multi-zone model
Stratification
Thermal stratification
Wall temperature
Walls
title The effect of thermal stratification on HCCI combustion: A numerical investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20thermal%20stratification%20on%20HCCI%20combustion:%20A%20numerical%20investigation&rft.jtitle=Applied%20energy&rft.au=Komninos,%20N.P.&rft.date=2015-02-01&rft.volume=139&rft.spage=291&rft.epage=302&rft.pages=291-302&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2014.10.089&rft_dat=%3Cproquest_cross%3E1669852891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660437011&rft_id=info:pmid/&rft_els_id=S0306261914011581&rfr_iscdi=true