Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order
In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficien...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2015-01, Vol.62 (1), p.195-204 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | 1 |
container_start_page | 195 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 62 |
creator | Jiang, Aimin Kwan, Hon Keung Zhu, Yanping Liu, Xiaofeng Xu, Ning Tang, Yibin |
description | In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order. |
doi_str_mv | 10.1109/TCSI.2014.2354771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669851753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6998094</ieee_id><sourcerecordid>1669851753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZPUq1WikUbcXjsk0muiVN4u72UH-9CS0KHoaZw_O-DE-SXBI8IgTr2-V4MR1RTPiIMsGzjBwlAyKESrHC8ri_uU4Vo-o0OQthjTHVmJFB8nIPwX3UqCnRorU-AJpMX9HEVRF8QO8ufqLnxtURzdvoNu7bRtf80S7ukK2LA4_mvgB_npyUtgpwcdjD5G3ysBw_pbP543R8N0tzLmVMLbPYlpwSCipXypaFFExSIcBqTrJSdAMZL3OSU8ioWEkmM0pArQqttMBsmNzse1vffG0hRLNxIYeqsjU022CIlFp1LYJ16PU_dN1sfd1911Gc40wITTuK7KncNyF4KE3r3cb6nSHY9JJNL9n0ks1Bcpe52mccAPzyUmuFNWc_sup2YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644075592</pqid></control><display><type>article</type><title>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Aimin ; Kwan, Hon Keung ; Zhu, Yanping ; Liu, Xiaofeng ; Xu, Ning ; Tang, Yibin</creator><creatorcontrib>Jiang, Aimin ; Kwan, Hon Keung ; Zhu, Yanping ; Liu, Xiaofeng ; Xu, Ning ; Tang, Yibin</creatorcontrib><description>In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2014.2354771</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Balancing ; Circuits ; Design engineering ; Equivalence ; Filter order ; Filtering ; FIR filters ; Heuristic ; iterative-reweighted-least-squares (IRLS) ; Least squares methods ; linear phase ; Minimization ; Optimization ; Quadratic programming ; quadratic programming (QP) ; sparse FIR filter ; Sparse matrices ; Sparsity ; weighted l_{0} -norm minimization</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2015-01, Vol.62 (1), p.195-204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</citedby><cites>FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6998094$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6998094$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Aimin</creatorcontrib><creatorcontrib>Kwan, Hon Keung</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Tang, Yibin</creatorcontrib><title>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Circuits</subject><subject>Design engineering</subject><subject>Equivalence</subject><subject>Filter order</subject><subject>Filtering</subject><subject>FIR filters</subject><subject>Heuristic</subject><subject>iterative-reweighted-least-squares (IRLS)</subject><subject>Least squares methods</subject><subject>linear phase</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>quadratic programming (QP)</subject><subject>sparse FIR filter</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>weighted l_{0} -norm minimization</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZPUq1WikUbcXjsk0muiVN4u72UH-9CS0KHoaZw_O-DE-SXBI8IgTr2-V4MR1RTPiIMsGzjBwlAyKESrHC8ri_uU4Vo-o0OQthjTHVmJFB8nIPwX3UqCnRorU-AJpMX9HEVRF8QO8ufqLnxtURzdvoNu7bRtf80S7ukK2LA4_mvgB_npyUtgpwcdjD5G3ysBw_pbP543R8N0tzLmVMLbPYlpwSCipXypaFFExSIcBqTrJSdAMZL3OSU8ioWEkmM0pArQqttMBsmNzse1vffG0hRLNxIYeqsjU022CIlFp1LYJ16PU_dN1sfd1911Gc40wITTuK7KncNyF4KE3r3cb6nSHY9JJNL9n0ks1Bcpe52mccAPzyUmuFNWc_sup2YQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Jiang, Aimin</creator><creator>Kwan, Hon Keung</creator><creator>Zhu, Yanping</creator><creator>Liu, Xiaofeng</creator><creator>Xu, Ning</creator><creator>Tang, Yibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150101</creationdate><title>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</title><author>Jiang, Aimin ; Kwan, Hon Keung ; Zhu, Yanping ; Liu, Xiaofeng ; Xu, Ning ; Tang, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Circuits</topic><topic>Design engineering</topic><topic>Equivalence</topic><topic>Filter order</topic><topic>Filtering</topic><topic>FIR filters</topic><topic>Heuristic</topic><topic>iterative-reweighted-least-squares (IRLS)</topic><topic>Least squares methods</topic><topic>linear phase</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>quadratic programming (QP)</topic><topic>sparse FIR filter</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>weighted l_{0} -norm minimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Aimin</creatorcontrib><creatorcontrib>Kwan, Hon Keung</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Tang, Yibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Aimin</au><au>Kwan, Hon Keung</au><au>Zhu, Yanping</au><au>Liu, Xiaofeng</au><au>Xu, Ning</au><au>Tang, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>62</volume><issue>1</issue><spage>195</spage><epage>204</epage><pages>195-204</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2014.2354771</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2015-01, Vol.62 (1), p.195-204 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669851753 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Balancing Circuits Design engineering Equivalence Filter order Filtering FIR filters Heuristic iterative-reweighted-least-squares (IRLS) Least squares methods linear phase Minimization Optimization Quadratic programming quadratic programming (QP) sparse FIR filter Sparse matrices Sparsity weighted l_{0} -norm minimization |
title | Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Sparse%20FIR%20Filters%20With%20Joint%20Optimization%20of%20Sparsity%20and%20Filter%20Order&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Jiang,%20Aimin&rft.date=2015-01-01&rft.volume=62&rft.issue=1&rft.spage=195&rft.epage=204&rft.pages=195-204&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2014.2354771&rft_dat=%3Cproquest_RIE%3E1669851753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644075592&rft_id=info:pmid/&rft_ieee_id=6998094&rfr_iscdi=true |