Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order

In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2015-01, Vol.62 (1), p.195-204
Hauptverfasser: Jiang, Aimin, Kwan, Hon Keung, Zhu, Yanping, Liu, Xiaofeng, Xu, Ning, Tang, Yibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 1
container_start_page 195
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 62
creator Jiang, Aimin
Kwan, Hon Keung
Zhu, Yanping
Liu, Xiaofeng
Xu, Ning
Tang, Yibin
description In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order.
doi_str_mv 10.1109/TCSI.2014.2354771
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669851753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6998094</ieee_id><sourcerecordid>1669851753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZPUq1WikUbcXjsk0muiVN4u72UH-9CS0KHoaZw_O-DE-SXBI8IgTr2-V4MR1RTPiIMsGzjBwlAyKESrHC8ri_uU4Vo-o0OQthjTHVmJFB8nIPwX3UqCnRorU-AJpMX9HEVRF8QO8ufqLnxtURzdvoNu7bRtf80S7ukK2LA4_mvgB_npyUtgpwcdjD5G3ysBw_pbP543R8N0tzLmVMLbPYlpwSCipXypaFFExSIcBqTrJSdAMZL3OSU8ioWEkmM0pArQqttMBsmNzse1vffG0hRLNxIYeqsjU022CIlFp1LYJ16PU_dN1sfd1911Gc40wITTuK7KncNyF4KE3r3cb6nSHY9JJNL9n0ks1Bcpe52mccAPzyUmuFNWc_sup2YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644075592</pqid></control><display><type>article</type><title>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Aimin ; Kwan, Hon Keung ; Zhu, Yanping ; Liu, Xiaofeng ; Xu, Ning ; Tang, Yibin</creator><creatorcontrib>Jiang, Aimin ; Kwan, Hon Keung ; Zhu, Yanping ; Liu, Xiaofeng ; Xu, Ning ; Tang, Yibin</creatorcontrib><description>In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2014.2354771</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Balancing ; Circuits ; Design engineering ; Equivalence ; Filter order ; Filtering ; FIR filters ; Heuristic ; iterative-reweighted-least-squares (IRLS) ; Least squares methods ; linear phase ; Minimization ; Optimization ; Quadratic programming ; quadratic programming (QP) ; sparse FIR filter ; Sparse matrices ; Sparsity ; weighted l_{0} -norm minimization</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2015-01, Vol.62 (1), p.195-204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</citedby><cites>FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6998094$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6998094$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Aimin</creatorcontrib><creatorcontrib>Kwan, Hon Keung</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Tang, Yibin</creatorcontrib><title>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Circuits</subject><subject>Design engineering</subject><subject>Equivalence</subject><subject>Filter order</subject><subject>Filtering</subject><subject>FIR filters</subject><subject>Heuristic</subject><subject>iterative-reweighted-least-squares (IRLS)</subject><subject>Least squares methods</subject><subject>linear phase</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>quadratic programming (QP)</subject><subject>sparse FIR filter</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>weighted l_{0} -norm minimization</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZPUq1WikUbcXjsk0muiVN4u72UH-9CS0KHoaZw_O-DE-SXBI8IgTr2-V4MR1RTPiIMsGzjBwlAyKESrHC8ri_uU4Vo-o0OQthjTHVmJFB8nIPwX3UqCnRorU-AJpMX9HEVRF8QO8ufqLnxtURzdvoNu7bRtf80S7ukK2LA4_mvgB_npyUtgpwcdjD5G3ysBw_pbP543R8N0tzLmVMLbPYlpwSCipXypaFFExSIcBqTrJSdAMZL3OSU8ioWEkmM0pArQqttMBsmNzse1vffG0hRLNxIYeqsjU022CIlFp1LYJ16PU_dN1sfd1911Gc40wITTuK7KncNyF4KE3r3cb6nSHY9JJNL9n0ks1Bcpe52mccAPzyUmuFNWc_sup2YQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Jiang, Aimin</creator><creator>Kwan, Hon Keung</creator><creator>Zhu, Yanping</creator><creator>Liu, Xiaofeng</creator><creator>Xu, Ning</creator><creator>Tang, Yibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150101</creationdate><title>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</title><author>Jiang, Aimin ; Kwan, Hon Keung ; Zhu, Yanping ; Liu, Xiaofeng ; Xu, Ning ; Tang, Yibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-a3a0af4212e8c88afd6536255ea9417f517fe74fc1c2e725b636721e8bd989503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Circuits</topic><topic>Design engineering</topic><topic>Equivalence</topic><topic>Filter order</topic><topic>Filtering</topic><topic>FIR filters</topic><topic>Heuristic</topic><topic>iterative-reweighted-least-squares (IRLS)</topic><topic>Least squares methods</topic><topic>linear phase</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>quadratic programming (QP)</topic><topic>sparse FIR filter</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>weighted l_{0} -norm minimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Aimin</creatorcontrib><creatorcontrib>Kwan, Hon Keung</creatorcontrib><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Tang, Yibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Aimin</au><au>Kwan, Hon Keung</au><au>Zhu, Yanping</au><au>Liu, Xiaofeng</au><au>Xu, Ning</au><au>Tang, Yibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>62</volume><issue>1</issue><spage>195</spage><epage>204</epage><pages>195-204</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>In this paper, two novel algorithms are developed to design sparse linear-phase (LP) FIR filters. Compared to traditional design methods, they can jointly optimize coefficient sparsity and order of an LP FIR filter, so as to achieve a balance between filtering performance and implementation efficiency. The design problem under consideration is formally cast as a regularized l 0 -norm minimization problem, which is then tackled by two different design algorithms. In the first proposed algorithm, the objective function of the original design problem is replaced by its upper bound, which leads to a weighted l 0 -norm minimization problem, while in the second one a group of auxiliary variables are introduced such that the original design problem can be equivalently transformed to another weighted l 0 -norm minimization problem. The iterative-reweighted-least-squares (IRLS) algorithm is employed with appropriate modifications to solve both weighted l 0 -norm minimization problems. Simulation results show that, compared to traditional approaches, the proposed algorithms can achieve comparable or better design results in terms of both sparsity and effective filter order.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2014.2354771</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2015-01, Vol.62 (1), p.195-204
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_miscellaneous_1669851753
source IEEE Electronic Library (IEL)
subjects Algorithms
Balancing
Circuits
Design engineering
Equivalence
Filter order
Filtering
FIR filters
Heuristic
iterative-reweighted-least-squares (IRLS)
Least squares methods
linear phase
Minimization
Optimization
Quadratic programming
quadratic programming (QP)
sparse FIR filter
Sparse matrices
Sparsity
weighted l_{0} -norm minimization
title Design of Sparse FIR Filters With Joint Optimization of Sparsity and Filter Order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Sparse%20FIR%20Filters%20With%20Joint%20Optimization%20of%20Sparsity%20and%20Filter%20Order&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Jiang,%20Aimin&rft.date=2015-01-01&rft.volume=62&rft.issue=1&rft.spage=195&rft.epage=204&rft.pages=195-204&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2014.2354771&rft_dat=%3Cproquest_RIE%3E1669851753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644075592&rft_id=info:pmid/&rft_ieee_id=6998094&rfr_iscdi=true