Effect of carbon nanotube loadings on supercapacitor characteristics
Summary In order to improve the properties of electrodes based on carbon nanotubes (CNTs), nanocomposite electrodes of CNTs/activated carbon (AC) are prepared. The effect of CNT loadings on the performance of the nanocomposite electrodes is evaluated by electrochemical methods. Scanning electron mic...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2015-03, Vol.39 (3), p.336-343 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 3 |
container_start_page | 336 |
container_title | International journal of energy research |
container_volume | 39 |
creator | Huang, Naibao Kirk, Donald W. Thorpe, Steven J. Liang, Chenghao Xu, Lishuang Li, Wan Zhang, Shuchun Sun, Min |
description | Summary
In order to improve the properties of electrodes based on carbon nanotubes (CNTs), nanocomposite electrodes of CNTs/activated carbon (AC) are prepared. The effect of CNT loadings on the performance of the nanocomposite electrodes is evaluated by electrochemical methods. Scanning electron microscopy images show the CNTs are well dispersed, entwine with the AC, and form a more conductive network in a nanocomposite electrode. When CNT loadings increase from 0 to 10 wt%, the capacitance increases by 15% (89.4 to 102.5 F g−1), and the equivalent series resistance (ESR) decreases by 13% (0.93 to 0.81 Ω). The capacitance improvement has an optimum CNT loading of about 6 to 10 wt%. The decreased ESR with high CNT loadings does not prevent capacitance loss at sweep rates greater than 50 mV s−1. The nanocomposite electrode shows good cycle performance with no capacity loss after 5000 cycles at a scan rate of 500 mV s−1. These results indicate that the CNT‐based nanocomposite electrodes would be a promising material for use in supercapacitors. Copyright © 2014 John Wiley & Sons, Ltd.
Carbon nanotubes (CNTs) displayed more carbonyl and carboxy functional groups after treatment with concentrated nitric acid solution at 120°C when it was fabricated into a nanocomposite electrode with activated carbon (AC) entwined AC, and formed conductive network bundles, which decreased the equivalent series resistance and increased the capacitance. |
doi_str_mv | 10.1002/er.3246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669850598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3583634211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4356-88377254816ec2ca0e78dfd1ef484126bf72887ffa5cb9e87516adc121b272a63</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgCs4p_gsFXwTpzI82SR91zk0ZE_yBewtpetHOrqlJi-6_t2Pig08Hdx-Ouy9CpwSPCMb0EvyI0YTvoQHBWRYTkiz30QAzzuIMi-UhOgphhXE_I2KAbibWgmkjZyOjfe7qqNa1a7scosrpoqzfQtQ3Q9eAN7rRpmydj8y79tq04MvQliYcowOrqwAnv3WIXm4nz-NZPH-Y3o2v5rFJWMpjKZkQNE0k4WCo0RiELGxBwCYyIZTnVlAphbU6NXkGUqSE68IQSnIqqOZsiM53exvvPjsIrVqXwUBV6RpcFxThPJMpTjPZ07N_dOU6X_fX9SqljCSUbtXFTn2VFWxU48u19htFsNpGqcCrbZRq8rgtvY53uv8avv-09h-KCyZS9bqYquvF_ewpm0u1ZD8rE3Yl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652314228</pqid></control><display><type>article</type><title>Effect of carbon nanotube loadings on supercapacitor characteristics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Naibao ; Kirk, Donald W. ; Thorpe, Steven J. ; Liang, Chenghao ; Xu, Lishuang ; Li, Wan ; Zhang, Shuchun ; Sun, Min</creator><creatorcontrib>Huang, Naibao ; Kirk, Donald W. ; Thorpe, Steven J. ; Liang, Chenghao ; Xu, Lishuang ; Li, Wan ; Zhang, Shuchun ; Sun, Min</creatorcontrib><description>Summary
In order to improve the properties of electrodes based on carbon nanotubes (CNTs), nanocomposite electrodes of CNTs/activated carbon (AC) are prepared. The effect of CNT loadings on the performance of the nanocomposite electrodes is evaluated by electrochemical methods. Scanning electron microscopy images show the CNTs are well dispersed, entwine with the AC, and form a more conductive network in a nanocomposite electrode. When CNT loadings increase from 0 to 10 wt%, the capacitance increases by 15% (89.4 to 102.5 F g−1), and the equivalent series resistance (ESR) decreases by 13% (0.93 to 0.81 Ω). The capacitance improvement has an optimum CNT loading of about 6 to 10 wt%. The decreased ESR with high CNT loadings does not prevent capacitance loss at sweep rates greater than 50 mV s−1. The nanocomposite electrode shows good cycle performance with no capacity loss after 5000 cycles at a scan rate of 500 mV s−1. These results indicate that the CNT‐based nanocomposite electrodes would be a promising material for use in supercapacitors. Copyright © 2014 John Wiley & Sons, Ltd.
Carbon nanotubes (CNTs) displayed more carbonyl and carboxy functional groups after treatment with concentrated nitric acid solution at 120°C when it was fabricated into a nanocomposite electrode with activated carbon (AC) entwined AC, and formed conductive network bundles, which decreased the equivalent series resistance and increased the capacitance.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.3246</identifier><identifier>CODEN: IJERDN</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>activated carbon (AC) ; Capacitance ; Capacitors ; Carbon ; Carbon nanotubes ; carbon nanotubes (CNTs) ; electric double layer capacitor (EDLC) ; Electrodes ; Equivalence ; nanocomposite electrode ; Nanostructure ; Networks ; Supercapacitors</subject><ispartof>International journal of energy research, 2015-03, Vol.39 (3), p.336-343</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4356-88377254816ec2ca0e78dfd1ef484126bf72887ffa5cb9e87516adc121b272a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.3246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.3246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Huang, Naibao</creatorcontrib><creatorcontrib>Kirk, Donald W.</creatorcontrib><creatorcontrib>Thorpe, Steven J.</creatorcontrib><creatorcontrib>Liang, Chenghao</creatorcontrib><creatorcontrib>Xu, Lishuang</creatorcontrib><creatorcontrib>Li, Wan</creatorcontrib><creatorcontrib>Zhang, Shuchun</creatorcontrib><creatorcontrib>Sun, Min</creatorcontrib><title>Effect of carbon nanotube loadings on supercapacitor characteristics</title><title>International journal of energy research</title><addtitle>Int. J. Energy Res</addtitle><description>Summary
In order to improve the properties of electrodes based on carbon nanotubes (CNTs), nanocomposite electrodes of CNTs/activated carbon (AC) are prepared. The effect of CNT loadings on the performance of the nanocomposite electrodes is evaluated by electrochemical methods. Scanning electron microscopy images show the CNTs are well dispersed, entwine with the AC, and form a more conductive network in a nanocomposite electrode. When CNT loadings increase from 0 to 10 wt%, the capacitance increases by 15% (89.4 to 102.5 F g−1), and the equivalent series resistance (ESR) decreases by 13% (0.93 to 0.81 Ω). The capacitance improvement has an optimum CNT loading of about 6 to 10 wt%. The decreased ESR with high CNT loadings does not prevent capacitance loss at sweep rates greater than 50 mV s−1. The nanocomposite electrode shows good cycle performance with no capacity loss after 5000 cycles at a scan rate of 500 mV s−1. These results indicate that the CNT‐based nanocomposite electrodes would be a promising material for use in supercapacitors. Copyright © 2014 John Wiley & Sons, Ltd.
Carbon nanotubes (CNTs) displayed more carbonyl and carboxy functional groups after treatment with concentrated nitric acid solution at 120°C when it was fabricated into a nanocomposite electrode with activated carbon (AC) entwined AC, and formed conductive network bundles, which decreased the equivalent series resistance and increased the capacitance.</description><subject>activated carbon (AC)</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>carbon nanotubes (CNTs)</subject><subject>electric double layer capacitor (EDLC)</subject><subject>Electrodes</subject><subject>Equivalence</subject><subject>nanocomposite electrode</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Supercapacitors</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpd0N9LwzAQB_AgCs4p_gsFXwTpzI82SR91zk0ZE_yBewtpetHOrqlJi-6_t2Pig08Hdx-Ouy9CpwSPCMb0EvyI0YTvoQHBWRYTkiz30QAzzuIMi-UhOgphhXE_I2KAbibWgmkjZyOjfe7qqNa1a7scosrpoqzfQtQ3Q9eAN7rRpmydj8y79tq04MvQliYcowOrqwAnv3WIXm4nz-NZPH-Y3o2v5rFJWMpjKZkQNE0k4WCo0RiELGxBwCYyIZTnVlAphbU6NXkGUqSE68IQSnIqqOZsiM53exvvPjsIrVqXwUBV6RpcFxThPJMpTjPZ07N_dOU6X_fX9SqljCSUbtXFTn2VFWxU48u19htFsNpGqcCrbZRq8rgtvY53uv8avv-09h-KCyZS9bqYquvF_ewpm0u1ZD8rE3Yl</recordid><startdate>20150310</startdate><enddate>20150310</enddate><creator>Huang, Naibao</creator><creator>Kirk, Donald W.</creator><creator>Thorpe, Steven J.</creator><creator>Liang, Chenghao</creator><creator>Xu, Lishuang</creator><creator>Li, Wan</creator><creator>Zhang, Shuchun</creator><creator>Sun, Min</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7U5</scope></search><sort><creationdate>20150310</creationdate><title>Effect of carbon nanotube loadings on supercapacitor characteristics</title><author>Huang, Naibao ; Kirk, Donald W. ; Thorpe, Steven J. ; Liang, Chenghao ; Xu, Lishuang ; Li, Wan ; Zhang, Shuchun ; Sun, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4356-88377254816ec2ca0e78dfd1ef484126bf72887ffa5cb9e87516adc121b272a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>activated carbon (AC)</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>carbon nanotubes (CNTs)</topic><topic>electric double layer capacitor (EDLC)</topic><topic>Electrodes</topic><topic>Equivalence</topic><topic>nanocomposite electrode</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Naibao</creatorcontrib><creatorcontrib>Kirk, Donald W.</creatorcontrib><creatorcontrib>Thorpe, Steven J.</creatorcontrib><creatorcontrib>Liang, Chenghao</creatorcontrib><creatorcontrib>Xu, Lishuang</creatorcontrib><creatorcontrib>Li, Wan</creatorcontrib><creatorcontrib>Zhang, Shuchun</creatorcontrib><creatorcontrib>Sun, Min</creatorcontrib><collection>Istex</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Naibao</au><au>Kirk, Donald W.</au><au>Thorpe, Steven J.</au><au>Liang, Chenghao</au><au>Xu, Lishuang</au><au>Li, Wan</au><au>Zhang, Shuchun</au><au>Sun, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of carbon nanotube loadings on supercapacitor characteristics</atitle><jtitle>International journal of energy research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2015-03-10</date><risdate>2015</risdate><volume>39</volume><issue>3</issue><spage>336</spage><epage>343</epage><pages>336-343</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><coden>IJERDN</coden><abstract>Summary
In order to improve the properties of electrodes based on carbon nanotubes (CNTs), nanocomposite electrodes of CNTs/activated carbon (AC) are prepared. The effect of CNT loadings on the performance of the nanocomposite electrodes is evaluated by electrochemical methods. Scanning electron microscopy images show the CNTs are well dispersed, entwine with the AC, and form a more conductive network in a nanocomposite electrode. When CNT loadings increase from 0 to 10 wt%, the capacitance increases by 15% (89.4 to 102.5 F g−1), and the equivalent series resistance (ESR) decreases by 13% (0.93 to 0.81 Ω). The capacitance improvement has an optimum CNT loading of about 6 to 10 wt%. The decreased ESR with high CNT loadings does not prevent capacitance loss at sweep rates greater than 50 mV s−1. The nanocomposite electrode shows good cycle performance with no capacity loss after 5000 cycles at a scan rate of 500 mV s−1. These results indicate that the CNT‐based nanocomposite electrodes would be a promising material for use in supercapacitors. Copyright © 2014 John Wiley & Sons, Ltd.
Carbon nanotubes (CNTs) displayed more carbonyl and carboxy functional groups after treatment with concentrated nitric acid solution at 120°C when it was fabricated into a nanocomposite electrode with activated carbon (AC) entwined AC, and formed conductive network bundles, which decreased the equivalent series resistance and increased the capacitance.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/er.3246</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2015-03, Vol.39 (3), p.336-343 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_miscellaneous_1669850598 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | activated carbon (AC) Capacitance Capacitors Carbon Carbon nanotubes carbon nanotubes (CNTs) electric double layer capacitor (EDLC) Electrodes Equivalence nanocomposite electrode Nanostructure Networks Supercapacitors |
title | Effect of carbon nanotube loadings on supercapacitor characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20carbon%20nanotube%20loadings%20on%20supercapacitor%20characteristics&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Huang,%20Naibao&rft.date=2015-03-10&rft.volume=39&rft.issue=3&rft.spage=336&rft.epage=343&rft.pages=336-343&rft.issn=0363-907X&rft.eissn=1099-114X&rft.coden=IJERDN&rft_id=info:doi/10.1002/er.3246&rft_dat=%3Cproquest_wiley%3E3583634211%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652314228&rft_id=info:pmid/&rfr_iscdi=true |