Evolutionary algorithm and decisional DNA for multiple travelling salesman problem

In the real world, it is common to face optimization problems that have two or more objectives that must be optimized at the same time, that are typically explained in different units, and are in conflict with one another. This paper presents a hybrid structure that combines set of experience knowle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2015-02, Vol.150, p.50-57
Hauptverfasser: Wang, Peng, Sanin, Cesar, Szczerbicki, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 50
container_title Neurocomputing (Amsterdam)
container_volume 150
creator Wang, Peng
Sanin, Cesar
Szczerbicki, Edward
description In the real world, it is common to face optimization problems that have two or more objectives that must be optimized at the same time, that are typically explained in different units, and are in conflict with one another. This paper presents a hybrid structure that combines set of experience knowledge structures (SOEKS) and evolutionary algorithms, NSGA-II (Non-dominated Sorting Genetic Algorithm II), to solve multiple optimization problems. The proposed structure uses experience that is derived from a former decision event to improve the evolutionary algorithm’s ability to find optimal solutions rapidly and efficiently. It is embedded in a smart experience-based data analysis system (SEDAS) introduced in the paper. Experimental illustrative results of SEDAS application to solve a travelling salesman problem show that our new proposed hybrid model can find optimal or close to true Pareto-optimal solutions in a fast and efficient way.
doi_str_mv 10.1016/j.neucom.2014.01.075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669848742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231214012430</els_id><sourcerecordid>1660386770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-af42169705b3b32343da96ca104196f04ee843f026789fab79e28d64c44f60913</originalsourceid><addsrcrecordid>eNqNkM1rGzEQxUVpoW6a_yAHHXvZ7ejD-rgEguu2gZBCSc5C1s4mMtqVK-0a8t9njXsOOc1h3nsz70fIFYOWAVPf9-2Ic8hDy4HJFlgLev2BrJjRvDHcqI9kBZavGy4Y_0y-1LoHYJpxuyJ_t8ec5inm0ZcX6tNTLnF6HqgfO9phiPW0SfTH_Q3tc6HDnKZ4SEin4o-YUhyfaPUJ6-BHeih5l3D4Sj71PlW8_D8vyOPP7cPmd3P359ft5uauCULzqfG95ExZDeud2AkupOi8VcEzkMyqHiSikaIHrrSxvd9pi9x0SgYpewWWiQvy7Zy73P03Y53cEGtYnvIj5rk6ppQ10mjJ3yMFYZTWsEjlWRpKrrVg7w4lDgscx8CdaLu9O9N2J9oOmFtoL7brsw2XxseIxdUQcQzYxYJhcl2Obwe8AgFkif4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660386770</pqid></control><display><type>article</type><title>Evolutionary algorithm and decisional DNA for multiple travelling salesman problem</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Peng ; Sanin, Cesar ; Szczerbicki, Edward</creator><creatorcontrib>Wang, Peng ; Sanin, Cesar ; Szczerbicki, Edward</creatorcontrib><description>In the real world, it is common to face optimization problems that have two or more objectives that must be optimized at the same time, that are typically explained in different units, and are in conflict with one another. This paper presents a hybrid structure that combines set of experience knowledge structures (SOEKS) and evolutionary algorithms, NSGA-II (Non-dominated Sorting Genetic Algorithm II), to solve multiple optimization problems. The proposed structure uses experience that is derived from a former decision event to improve the evolutionary algorithm’s ability to find optimal solutions rapidly and efficiently. It is embedded in a smart experience-based data analysis system (SEDAS) introduced in the paper. Experimental illustrative results of SEDAS application to solve a travelling salesman problem show that our new proposed hybrid model can find optimal or close to true Pareto-optimal solutions in a fast and efficient way.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2014.01.075</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Data processing ; Decisional DNA (DDNA) ; Deoxyribonucleic acid ; Evolutionary ; Evolutionary algorithm ; Evolutionary algorithms ; Genetic algorithm ; Heuristics ; Hybrid structures ; Mathematical models ; Optimization ; Optimization problem ; Set of experience knowledge structure (SOEKS)</subject><ispartof>Neurocomputing (Amsterdam), 2015-02, Vol.150, p.50-57</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-af42169705b3b32343da96ca104196f04ee843f026789fab79e28d64c44f60913</citedby><cites>FETCH-LOGICAL-c372t-af42169705b3b32343da96ca104196f04ee843f026789fab79e28d64c44f60913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2014.01.075$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Sanin, Cesar</creatorcontrib><creatorcontrib>Szczerbicki, Edward</creatorcontrib><title>Evolutionary algorithm and decisional DNA for multiple travelling salesman problem</title><title>Neurocomputing (Amsterdam)</title><description>In the real world, it is common to face optimization problems that have two or more objectives that must be optimized at the same time, that are typically explained in different units, and are in conflict with one another. This paper presents a hybrid structure that combines set of experience knowledge structures (SOEKS) and evolutionary algorithms, NSGA-II (Non-dominated Sorting Genetic Algorithm II), to solve multiple optimization problems. The proposed structure uses experience that is derived from a former decision event to improve the evolutionary algorithm’s ability to find optimal solutions rapidly and efficiently. It is embedded in a smart experience-based data analysis system (SEDAS) introduced in the paper. Experimental illustrative results of SEDAS application to solve a travelling salesman problem show that our new proposed hybrid model can find optimal or close to true Pareto-optimal solutions in a fast and efficient way.</description><subject>Algorithms</subject><subject>Data processing</subject><subject>Decisional DNA (DDNA)</subject><subject>Deoxyribonucleic acid</subject><subject>Evolutionary</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithm</subject><subject>Heuristics</subject><subject>Hybrid structures</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Optimization problem</subject><subject>Set of experience knowledge structure (SOEKS)</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkM1rGzEQxUVpoW6a_yAHHXvZ7ejD-rgEguu2gZBCSc5C1s4mMtqVK-0a8t9njXsOOc1h3nsz70fIFYOWAVPf9-2Ic8hDy4HJFlgLev2BrJjRvDHcqI9kBZavGy4Y_0y-1LoHYJpxuyJ_t8ec5inm0ZcX6tNTLnF6HqgfO9phiPW0SfTH_Q3tc6HDnKZ4SEin4o-YUhyfaPUJ6-BHeih5l3D4Sj71PlW8_D8vyOPP7cPmd3P359ft5uauCULzqfG95ExZDeud2AkupOi8VcEzkMyqHiSikaIHrrSxvd9pi9x0SgYpewWWiQvy7Zy73P03Y53cEGtYnvIj5rk6ppQ10mjJ3yMFYZTWsEjlWRpKrrVg7w4lDgscx8CdaLu9O9N2J9oOmFtoL7brsw2XxseIxdUQcQzYxYJhcl2Obwe8AgFkif4</recordid><startdate>20150220</startdate><enddate>20150220</enddate><creator>Wang, Peng</creator><creator>Sanin, Cesar</creator><creator>Szczerbicki, Edward</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150220</creationdate><title>Evolutionary algorithm and decisional DNA for multiple travelling salesman problem</title><author>Wang, Peng ; Sanin, Cesar ; Szczerbicki, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-af42169705b3b32343da96ca104196f04ee843f026789fab79e28d64c44f60913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Data processing</topic><topic>Decisional DNA (DDNA)</topic><topic>Deoxyribonucleic acid</topic><topic>Evolutionary</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithm</topic><topic>Heuristics</topic><topic>Hybrid structures</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Optimization problem</topic><topic>Set of experience knowledge structure (SOEKS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Sanin, Cesar</creatorcontrib><creatorcontrib>Szczerbicki, Edward</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Sanin, Cesar</au><au>Szczerbicki, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary algorithm and decisional DNA for multiple travelling salesman problem</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2015-02-20</date><risdate>2015</risdate><volume>150</volume><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In the real world, it is common to face optimization problems that have two or more objectives that must be optimized at the same time, that are typically explained in different units, and are in conflict with one another. This paper presents a hybrid structure that combines set of experience knowledge structures (SOEKS) and evolutionary algorithms, NSGA-II (Non-dominated Sorting Genetic Algorithm II), to solve multiple optimization problems. The proposed structure uses experience that is derived from a former decision event to improve the evolutionary algorithm’s ability to find optimal solutions rapidly and efficiently. It is embedded in a smart experience-based data analysis system (SEDAS) introduced in the paper. Experimental illustrative results of SEDAS application to solve a travelling salesman problem show that our new proposed hybrid model can find optimal or close to true Pareto-optimal solutions in a fast and efficient way.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2014.01.075</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2015-02, Vol.150, p.50-57
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1669848742
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Data processing
Decisional DNA (DDNA)
Deoxyribonucleic acid
Evolutionary
Evolutionary algorithm
Evolutionary algorithms
Genetic algorithm
Heuristics
Hybrid structures
Mathematical models
Optimization
Optimization problem
Set of experience knowledge structure (SOEKS)
title Evolutionary algorithm and decisional DNA for multiple travelling salesman problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20algorithm%20and%20decisional%20DNA%20for%20multiple%20travelling%20salesman%20problem&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Wang,%20Peng&rft.date=2015-02-20&rft.volume=150&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2014.01.075&rft_dat=%3Cproquest_cross%3E1660386770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660386770&rft_id=info:pmid/&rft_els_id=S0925231214012430&rfr_iscdi=true