Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: Evaluation of the effect of leukocyte inclusion

The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet‐rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet‐rich plasma (L‐PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte‐free (PRGF‐Endoret) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2015-03, Vol.103 (3), p.1011-1020
Hauptverfasser: Anitua, E., Zalduendo, M. M., Prado, R., Alkhraisat, M. H., Orive, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1020
container_issue 3
container_start_page 1011
container_title Journal of biomedical materials research. Part A
container_volume 103
creator Anitua, E.
Zalduendo, M. M.
Prado, R.
Alkhraisat, M. H.
Orive, G.
description The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet‐rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet‐rich plasma (L‐PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte‐free (PRGF‐Endoret) and L‐PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte‐free fibrin matrices were homogenous while leukocyte‐containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)‐1β and IL‐16 but not in the platelet‐derived growth factors release (
doi_str_mv 10.1002/jbm.a.35244
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669848642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660398394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6374-b10d80f5689a30f0da6e21a58eace82de12d0528833c5ad61ff0a170a9b1c4cd3</originalsourceid><addsrcrecordid>eNqNkc1u1DAURiMEoqWwYo8ssamEMvgvHptdW2YGUAsFgVhajnNNPZPEg50A8wy8NA7TdsECdeV7pXOP_OkriqcEzwjG9OW67mZmxirK-b3ikFQVLbkS1f1p5qpkVImD4lFK6wwLXNGHxQHlUmHM1WHx-yLE7VX4Bj0yfYO2MfjetabrzBDiDtndEDa-BxShBZMATcvgbUIuhg5dfloty0XfhAgDcr6OvkfJGudC26RXaPHDtKMZfOhRcGi4AgTOgR2mrYVxE7IekO9tO6YMPS4eONMmeHL9HhVflovPZ2_K8w-rt2cn56UVbM7LmuBGYlcJqQzDDjdGACWmkmAsSNoAoU2OKSVjtjKNIM5hQ-bYqJpYbht2VBzvvTnt9xHSoDufLLSt6SGMSRMhlORScHoXFDMlmeJ3QHNDTDE2oc__QddhjH3OrMk8R-SMqXmmXuwpG0NKEZzeRt-ZuNME66l5nZvXRv9tPtPPrp1j3UFzy95UnQG6B376Fnb_c-l3pxcnN9Zyf-TTAL9uj0zcaJF_Wumv71f68vTjayZXS43ZH8o6yVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1737443397</pqid></control><display><type>article</type><title>Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: Evaluation of the effect of leukocyte inclusion</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Anitua, E. ; Zalduendo, M. M. ; Prado, R. ; Alkhraisat, M. H. ; Orive, G.</creator><creatorcontrib>Anitua, E. ; Zalduendo, M. M. ; Prado, R. ; Alkhraisat, M. H. ; Orive, G.</creatorcontrib><description>The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet‐rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet‐rich plasma (L‐PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte‐free (PRGF‐Endoret) and L‐PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte‐free fibrin matrices were homogenous while leukocyte‐containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)‐1β and IL‐16 but not in the platelet‐derived growth factors release (&lt;1.5‐fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L‐PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF‐Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF‐Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1011–1020, 2015.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35244</identifier><identifier>PMID: 24890049</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Cell Adhesion ; Culture ; Cytokines ; Cytokines - metabolism ; Epidermal Growth Factor - metabolism ; Fibrin ; Fibrin - chemistry ; fibrin scaffold ; Growth factors ; Hepatocyte Growth Factor - metabolism ; Humans ; Hydrogels - chemistry ; Inclusions ; Inflammation ; Insulin - metabolism ; Insulin-Like Growth Factor I - metabolism ; Intercellular Signaling Peptides and Proteins - metabolism ; Interleukin-16 - metabolism ; Interleukin-1beta - metabolism ; Leukocytes ; Leukocytes - cytology ; Monitors ; Optics and Photonics ; Platelet-Derived Growth Factor - metabolism ; platelet-rich plasma ; Platelet-Rich Plasma - metabolism ; Scaffolds ; Tissue Engineering - methods ; Transforming Growth Factor beta1 - metabolism ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Journal of biomedical materials research. Part A, 2015-03, Vol.103 (3), p.1011-1020</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6374-b10d80f5689a30f0da6e21a58eace82de12d0528833c5ad61ff0a170a9b1c4cd3</citedby><cites>FETCH-LOGICAL-c6374-b10d80f5689a30f0da6e21a58eace82de12d0528833c5ad61ff0a170a9b1c4cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35244$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35244$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24890049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anitua, E.</creatorcontrib><creatorcontrib>Zalduendo, M. M.</creatorcontrib><creatorcontrib>Prado, R.</creatorcontrib><creatorcontrib>Alkhraisat, M. H.</creatorcontrib><creatorcontrib>Orive, G.</creatorcontrib><title>Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: Evaluation of the effect of leukocyte inclusion</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet‐rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet‐rich plasma (L‐PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte‐free (PRGF‐Endoret) and L‐PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte‐free fibrin matrices were homogenous while leukocyte‐containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)‐1β and IL‐16 but not in the platelet‐derived growth factors release (&lt;1.5‐fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L‐PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF‐Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF‐Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1011–1020, 2015.</description><subject>Cell Adhesion</subject><subject>Culture</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Fibrin</subject><subject>Fibrin - chemistry</subject><subject>fibrin scaffold</subject><subject>Growth factors</subject><subject>Hepatocyte Growth Factor - metabolism</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Inclusions</subject><subject>Inflammation</subject><subject>Insulin - metabolism</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Interleukin-16 - metabolism</subject><subject>Interleukin-1beta - metabolism</subject><subject>Leukocytes</subject><subject>Leukocytes - cytology</subject><subject>Monitors</subject><subject>Optics and Photonics</subject><subject>Platelet-Derived Growth Factor - metabolism</subject><subject>platelet-rich plasma</subject><subject>Platelet-Rich Plasma - metabolism</subject><subject>Scaffolds</subject><subject>Tissue Engineering - methods</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURiMEoqWwYo8ssamEMvgvHptdW2YGUAsFgVhajnNNPZPEg50A8wy8NA7TdsECdeV7pXOP_OkriqcEzwjG9OW67mZmxirK-b3ikFQVLbkS1f1p5qpkVImD4lFK6wwLXNGHxQHlUmHM1WHx-yLE7VX4Bj0yfYO2MfjetabrzBDiDtndEDa-BxShBZMATcvgbUIuhg5dfloty0XfhAgDcr6OvkfJGudC26RXaPHDtKMZfOhRcGi4AgTOgR2mrYVxE7IekO9tO6YMPS4eONMmeHL9HhVflovPZ2_K8w-rt2cn56UVbM7LmuBGYlcJqQzDDjdGACWmkmAsSNoAoU2OKSVjtjKNIM5hQ-bYqJpYbht2VBzvvTnt9xHSoDufLLSt6SGMSRMhlORScHoXFDMlmeJ3QHNDTDE2oc__QddhjH3OrMk8R-SMqXmmXuwpG0NKEZzeRt-ZuNME66l5nZvXRv9tPtPPrp1j3UFzy95UnQG6B376Fnb_c-l3pxcnN9Zyf-TTAL9uj0zcaJF_Wumv71f68vTjayZXS43ZH8o6yVQ</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Anitua, E.</creator><creator>Zalduendo, M. M.</creator><creator>Prado, R.</creator><creator>Alkhraisat, M. H.</creator><creator>Orive, G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>201503</creationdate><title>Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: Evaluation of the effect of leukocyte inclusion</title><author>Anitua, E. ; Zalduendo, M. M. ; Prado, R. ; Alkhraisat, M. H. ; Orive, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6374-b10d80f5689a30f0da6e21a58eace82de12d0528833c5ad61ff0a170a9b1c4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell Adhesion</topic><topic>Culture</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Fibrin</topic><topic>Fibrin - chemistry</topic><topic>fibrin scaffold</topic><topic>Growth factors</topic><topic>Hepatocyte Growth Factor - metabolism</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Inclusions</topic><topic>Inflammation</topic><topic>Insulin - metabolism</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Interleukin-16 - metabolism</topic><topic>Interleukin-1beta - metabolism</topic><topic>Leukocytes</topic><topic>Leukocytes - cytology</topic><topic>Monitors</topic><topic>Optics and Photonics</topic><topic>Platelet-Derived Growth Factor - metabolism</topic><topic>platelet-rich plasma</topic><topic>Platelet-Rich Plasma - metabolism</topic><topic>Scaffolds</topic><topic>Tissue Engineering - methods</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anitua, E.</creatorcontrib><creatorcontrib>Zalduendo, M. M.</creatorcontrib><creatorcontrib>Prado, R.</creatorcontrib><creatorcontrib>Alkhraisat, M. H.</creatorcontrib><creatorcontrib>Orive, G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anitua, E.</au><au>Zalduendo, M. M.</au><au>Prado, R.</au><au>Alkhraisat, M. H.</au><au>Orive, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: Evaluation of the effect of leukocyte inclusion</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2015-03</date><risdate>2015</risdate><volume>103</volume><issue>3</issue><spage>1011</spage><epage>1020</epage><pages>1011-1020</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet‐rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet‐rich plasma (L‐PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte‐free (PRGF‐Endoret) and L‐PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte‐free fibrin matrices were homogenous while leukocyte‐containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)‐1β and IL‐16 but not in the platelet‐derived growth factors release (&lt;1.5‐fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L‐PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF‐Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF‐Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1011–1020, 2015.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24890049</pmid><doi>10.1002/jbm.a.35244</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2015-03, Vol.103 (3), p.1011-1020
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1669848642
source MEDLINE; Wiley Online Library All Journals
subjects Cell Adhesion
Culture
Cytokines
Cytokines - metabolism
Epidermal Growth Factor - metabolism
Fibrin
Fibrin - chemistry
fibrin scaffold
Growth factors
Hepatocyte Growth Factor - metabolism
Humans
Hydrogels - chemistry
Inclusions
Inflammation
Insulin - metabolism
Insulin-Like Growth Factor I - metabolism
Intercellular Signaling Peptides and Proteins - metabolism
Interleukin-16 - metabolism
Interleukin-1beta - metabolism
Leukocytes
Leukocytes - cytology
Monitors
Optics and Photonics
Platelet-Derived Growth Factor - metabolism
platelet-rich plasma
Platelet-Rich Plasma - metabolism
Scaffolds
Tissue Engineering - methods
Transforming Growth Factor beta1 - metabolism
Vascular Endothelial Growth Factor A - metabolism
title Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: Evaluation of the effect of leukocyte inclusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphogen%20and%20proinflammatory%20cytokine%20release%20kinetics%20from%20PRGF-Endoret%20fibrin%20scaffolds:%20Evaluation%20of%20the%20effect%20of%20leukocyte%20inclusion&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Anitua,%20E.&rft.date=2015-03&rft.volume=103&rft.issue=3&rft.spage=1011&rft.epage=1020&rft.pages=1011-1020&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35244&rft_dat=%3Cproquest_cross%3E1660398394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1737443397&rft_id=info:pmid/24890049&rfr_iscdi=true